Installation manual # Daikin Altherma 3 R W https://daikintechnicaldatahub.eu EBBH11DF6V EBBH11DF9W EBBH16DF6V EBBH16DF9W EBBX11DF6V EBBX11DF9W EBBX16DF6V EBBX16DF9W KONFORMITÄTSERKLÄRUNG DECLARATION-DE-CONFORMITE CONFORMITEITSVERKLARING Daikin Europe N.V. . DECLARACION-DE-CONFORMIDAD DICHIARAZIONE-DI-CONFORMITA ΔΗΛΩΣΗ ΣΎΜΜΟΡΦΩΣΗΣ CE - DECLARAÇÃO-DE-CONFORMIDADE CE - 3ARBIEHNE-O-COOTBETCTBИN CE - OVERENSSTEMMELSESERKLÆRING CE - FÖRSÄKRAN-OM-ÖVERENSTÄMMELSE 999 ERKLÆRING OM-SAMSVAR ILMOITUS-YHDENMUKAISUUDESTA PROHLÁŠENÍ-O-SHODĚ CE - IZJAVA-O-USKLAĐENOSTI CE - MEGFELELÓSEGI-NYILATKOZAT CE - DEKLARACJA-ZGODNO ŚCI CE - DECLARA ŢIE-DE-CONFORMITATE CE - IZJAVA O SKLADNOSTI CE - VASTAVUSDEKLARATSIOON CE - ĄEKTIAPAĻIMЯ-3A-CЪOTBETCTBME CE - ATITIKTIES-DEKLARACIJA CE - ATBILSTĪBAS-DEKLARĀCIJA CE - VYHLĀSENIE-ZHODY CE - UYGUNLUK-BEYANI # verklaart hierbij op eigen exclusieve verantwoordelijkheid dat de apparatuur waarop deze verklaring betretking heeft: declara bajo su única responsabilidad que el equipo al que hace referencia la declaración: dichiara sotto la propria responsabilità che gli apparecchi a cui è riferita questa dichiarazione. Orplove pie cmookscrinkij mic sublovin din o scomkopolo, crovo omoto oroagéparan in mapoulora diplovami, declara sob sua exclusiva responsabilitada que os equipamentos a que esta declaração se referer. declares under its sole responsibility that the equipment to which this declaration relates; erklärt auf seine alleinge Verantwortung daß die Ausrüstung für die diese Erklärung bestimmt ist: déclare sous sa seule responsabilité que l'équipement visé par la présente déclaration: prohlastiję ve svė iprilė odpovlėdnosti, že zalizeni, k nėmuž se tolo prohlaseni vzbiulje: zjavlijuje pod isključivo vlastitom odgonomošcu de oprema na koju se ova izjana odnosi: teljes felefossėge tudatiban kjelenti, hogy a berendezėsek, melyekre e nylatkozat vonatkozik. 8622444 8 8 8 8 8 8 8 8 заявляет, исилочительно под свою ответственность, что оборудование, к которому относится настоящее заявление: erkiaerer under eneansvarig, at udstyret, som er omfattet af denne erkiaering: deklarerari egenskap av huvudansvärg, att utrushingen som berörs av demra deklaration innebär att: erklærer et fullstendig ansvar for at det utstyr som berøres av deme deklarasjon innebærer at: Innotitaa yksinomaan omala vastuulaan, että fämän linnotuksen barkotitamat latteet 11 (2b. dekaruje na wkaną i wykazną odpowiadzianóść, że urządzenią, których ta dekaraja dotyczy. 18 (8b. debata pe propter disputniche ce ad chipmenhe le stare se neleńa zaseża de decharje: 18 (8b. z. vso odgownosto) cypena narazy na kaleno se zjąza naraska. 18 (8b. z. vso odgownosto) cypena narazy na kaleno se zjąza naraska. 18 (8b. prarapyna na caso noropokor, v elodogopateno, za wo oce o maza narazy parapagus; 18 (8b. prarapyna na caso noropokor, v elodogopateno, za wo oce o maza nara parapagus; 18 (8b. prarapyna na skomyte skelaj kad jang, kuria i hakora ść ekkarzją. 18 (9b. prarapyna na skomyte skelaj kad jang, kuria i hakora ść ekkarzją. 18 (9b. praka) na skomyte skelaj kad jang, kuria i hakora ść ekkarzją. 18 (9b. praka) na kastu zopowednost, że zadażene, na któré sa rzabuje oby wylażene. 18 (9b. praka) na pad pozpowednost, że zadażene, na któré sa rzabuje do oronnem na saglidaki giń dduguru beyan eder. 18 (9b. praka) na pad pozpowednost, że zadażene, na któré sa rzabuje do oronnem na saglidaki giń dduguru beyan eder. # EBBH11DF6V, EBBH11DF9W, EBBH16DF6V, EBBH16DF9W EBBX11DF6V, EBBX11DF9W, EBBX16DF6V, EBBX16DF9W are in conformity with the following standard(s) or other normative document(s), provided that these are used in accordance with our der/den folgenden Norm(en) oder einem anderen Normdokument oder - 06 sont conformes à la/aux norme(s) ou autre(s) document(s) normatif(s), gemäß unseren Anweisungen eingesetzt werden: pour autant qu'ils soient utilisés conformément à nos instructions: conform de volgende norm(en) of één of meer andere bindende documenten zijn, op voorwaarde dat ze worden gebruikt overeenkomstig 08 0 documento(s) normativo(s), siempre que sean utilizados de acuerdo con sono conformi al(i) seguente(i) standard(s) o altro(i) documento(i) a carattere normativo, a patto che vengano usati in conformità alle nostre 05 están en conformidad con la(s) siguiente(s) norma(s) u otro(s) nuestras instrucciones: istruzioni είναι σύμφωνα με τοία) ακόλουβοία) πρότυποία) ή άλλο έγγραφοία) 11 κανονισμών, υπό την προϋπάθεση ότι χρησιμοποιούνται σύμφωνα με τις οδηγίες μας: documento(s) normativo(s), desde que estes sejam utilizados de acordo estão em conformidade com a(s) seguinte(s) norma(s) ou outro(s) com as nossas instruções: voe instrukser. 11. respektive utrustring år utförd i överensstämmelse med och 12. fölger fölgande standard eri eller andra normgykande Gokument, under 13. fölger fölgande standarding sker i överensstämmelse med vära 09 соответствуют следующим стандартам или другим нормативным retningsgivende dokument(er), forudsat at disse anvendes i henhold til документам, при условии их использования согласно нашим 10 overholder følgende standard(er) eller andet/andre instruktioner i henhold til våre instrukser: 13 vastaavat seuraavien standardien ja muiden ohjeellisten dokumenttien 18 sunt în conformitate cu următorul (următoarele) standard(e) sau atī(e) andre normgivende dokument(er), under forutssetning av at disse brukes dokumentum(ok)nak, ha azokat előírás szerint használják: normalizacyjnych, pod warunkiem że używane są zgodnie z naszymi 12 respektive utstyr er i overensstemmelse med følgende slandard(er) eller 17 spelniają wymogi następujących norm i innych dokumentów 14. za pedokut, žeja vydžány v sadadu srátnijekyny, odpoválej odnomentke), ou condija ca acesie sá fe utličzen h raz pedokatu, žeja vydžány v sadadu srátnijekyny, odpoválej ounomenteu u stavlopim nemser. 19. skadu sa se ljecekim sadadnom mila odkomentum. 19. skadu za se sljecekim sadadnom mila odkomentum. 19. skadu za se sljecekim sadadnom mila ji dugim nomratkvim pogojem od se se uporbálejo v skadu z namim na oddi: obnomentom juz ujeti da se on korste s kadadu s našim upudama. Zo on vastavse sigmoršeje standardije ga vá taste omratikvse odkomentum su z ujeti da se on korste s kadad se os on korste s kadad se os on korste s kadad se od ovaštavse sigmoršeje sod sadad sod se os od ovaštavse sigmoršeje sod sadad se os od ovaštavse sigmoršeje sod sadad se os od ovaštavse sigmoršeje kadad za se od ovaštavse sigmoršeje kadad za se od ovaštavse sigmoršeje sod ovaštavse sigmoršeje sod ovaštavstava me se juhendlele. документи, при условие, че се използват съгласно нашите 22 atitinka žemiau nurodytus standartus ir (arba) kitus norminius ve nom belirten belgelerle uyumludur. súlade s našim návodom: | 9 | |----| | 7 | | 11 | | 35 | | 3 | | 30 | | ž | | | | 2 | 01 following the provisions of: | 9 | 10 under iagttagelse af bestemmelse | |----|------------------------------------|----|-------------------------------------| | 05 | gemäß den Vorschriften der: | ₽ | enligt villkoren i: | | 8 | conformément aux stipulations des: | 54 | gitt i henhold til bestemmelsene i: | | 8 | overeenkomstig de bepalingen van: | ೮ | noudattaen määräyksiä: | | 92 | siguiendo las disposiciones de: | 4 | za dodržení ustanovení předpisu: | | 9 | secondo le prescrizioni per: | 15 | prema odredbama: | | 0 | με τήρηση των διατάξεων των: | 9 | követi a(z): | | 8 | de acordo com o previsto em: | 4 | zgodnie z postanowieniami Dyreł | | 8 | 09 в соответствии с положениями: | 9 | în urma prevederilor: | 01 * as set out in < A> and judged positively by according to the erne 19 ob upoštevanju določb: 20. orastanat inotelele. 21. cneppaliwi krajavine na: 22. laikanis nuostati, pateikiami; 23. sevelooj pasibas, kas noieklas: 24. održavaju ustanovenia: 25. buruni kryšlama ulygun olarak: sktw. 11 * enigri <A> och godkänts av enigr Centrifkatet <C>. ** i enigriet med den Tekniska Konstruktionsfilen <A> som positivit intygats av <E> (Fastsatt modul <P>) <G>> Riskkategon <A> és även nästa sida. 12 * som det fremkommer i <A> og gjennom positiv bedømmelse av Certificatio Certificatio Lectificatio Lectificatio Lectificatio Lectificatio Lectificatio Lectificatio Lectificatio Lectification Lectif 06 * delineato nel <A> e giudicato positivamente da secondo riferimento anche alla pagina successiva To un order the control of cont όπως καθορίζεται στο <Α> και κρίνεται θετικά από το <Β> σύμφωνα με το Πιστοποιητικό <C>. ** wie in der Technischen Konstruktionsakte <D> autgeführt und von <E> (Angewandtes Modul <F>) positiv ausgezeichnet <G>. Risikoart <H>. 03*1 wie in <A> aufgeführt und von positiv beurteilt gemäß этствии с положительным решением <В> ** как указано в Досье технического топкования <D> и в соответствии с положительным решением <Е> согласно Свидетельству <С>. 09 * как указано в <А> и в сооте <H>. Se reporter également à la page suivante. 04* zoals vermeld in <A> en positief beoordeeld door overeenkomstig ** tel que stipulé dans le Fichier de Construction Technique <D> et jugé positivement par <E> (Module appliqué <F>) <G> Catégorie de risque s osvědčením <C> 10 * som anført i 4A- og positivt vurdeter af i henhold til Certifikar <C> ** som anført i den Tekniske Konstruktionsfil <D> og positivt vurderet af <E> (Anvendt modul <P>) <G>. Riskoklasse <4P>. Se også næste side. ** tal como se expone en el Archivo de Construcción Técnica <D> y juzgado positivamento por <E> (Modulo aplicado <F>). <G>. Categoría (Прикладной модуль <P>). <G>. Категория риска <H>. Также 05 * como se establece en <A> y es valorado positivamente por **Zoals vermeld in het Technisch Constructiedossier CP> en in orde bevonden door CE> (Toegepaste module F>) G> de acuerdo con el Certificado <C>. Risicocategorie < H> Zie ook de volgende pagina. de riesgo <H>. Consulte también la siguiente página. * kako je zbožen u Datoteci o ehničkoj konstrukciji 🗘 j pozitivno ocijenjeno od stane 🗲 (Primijenjen modul 🗗).
 Cojenjeno
od stane 🔁 (Primijenjen modul
F).
 Opasnosti
 + 1akođer pogledajte na siljedećoj stranici. ** jak bylo uvedeno v souboru technické konstrukce «D» a pozitivně zjášéno «E» (použítý modul. «P»). «B». Kalegorie rizik «H». V E také naskedující stana. §5 * kako je bůženo u «A» j pozitivno ocjenjeno od strane «B» prema Certifikatu «C». * Electromagnetic Compatibility 2014/30/EU Low Voltage 2014/35/EU Pressure Equipment 2014/68/EU szeint. "a (2) CP mūszai konstrukcišs dakumentáció alagján, a(2) <В jazotla "кало е залжено в Анта за темическа конструция Ф> и оценено а перебене́ц (аlkalmazott modu; <P>, «Ф> Veszélyesség kategória попомително т Ф> Припомен мидул <P>, бъ. Категория рисх <P> Lása még a köretkező oldabon. 16* a(z) <A> alapján, a(z) igazolta a megfelelést, a(z) <C> tanústivány 21 * както е изложено в <A> и оценено положително от съгласно ing ge Sertificat ΦΣ ** som det fremformer i den Teknisk ekonstulksjonsflen ΦD og gemom ** Som det fremformer i den Teknisk ekonstulksjonsflen ΦD og gemom ** Som det fremformer i den Teknisk ekonstulksjonsflen ΦD og gemom ** Som det fremformer i den Teknisk ekonstulksjonsflen ΦD i pzzytywną ** Som det fremformer i den Teknisk ekonstulksjonsflen ΦD i pzzytywną ** Som det fremformer i den Teknisk ekonstulksjonsflen ΦD i pzzytywną ** Som det fremformer i den Teknisk ekonstulkcyjną ΦD i pzzytywną ** Som det fremformer i den Teknisk ekonstulkcyjną ΦD i pzzytywną ** Som det fremformer i den Teknisk ekonstulkcyjną ΦD i pzzytywną ** Som det fremformer i den Teknisk ekonstulkcyjną ΦD i pzzytywną ** Som det fremformer i den Teknisk ekonstulkcyjną ΦD i pzzytywną ** Som det fremformer i den Teknisk ekonstulkcyjną ekonstulkcyjny 18* aga cum este stabilit în 44> şi apredat pozitiv de 48> în conformitate cu 23 * tâi noâdrîs 44> un abil stois 48> pozifivajam vêskraja ar senffitiatu 40.> s 19* kot je določeno v <A> in odobreno s strani v skladu 24 * ako bolo uvedené v <A> a pozitívne zistené v súlade s osvedčením <C> " kot je določeno v tehnični mapi ΦD in odobreno s stari ←D (Uporabljen " ako je to stanovené v Súbore techničkej konštrukcie <Da a kadne modul ←P). <Gb. Kdegonja tveganja <Pb. Clejte tudi na nasketnji posiderié <D: Aplikovaný modul ←P). <Gb. Kdegória nebezpečia <Pt>. s certifikatom <C> strant. 20 * rogu on näitatud obkumendis 4⊅ ja heaks kiidetud 49> järgi vastavatt 25 * 4⊅*da betirtidigi gibti ve C⊅ sertifikasuna göre 4⊅ tarafından olumlu sertifikaadile 4⊅. ** nagu on näidatud tehnilises dokumentatsioonis <D> ja heaks kiidetud <E> järgi (lisamoodul <F>) <G>. Riskikategooria <H> Vaadake ka olarak değerlendirildiği gibi. "Op silve ve Eb tarafından "-Op Felixik Yapı Dosyasında berildiği gibi ve «Eb tarafından olumlu olarak (Uygulanan modül ref>) değerlendiriniştir. <6>- Risk Rategorisi <4>- Ayrıca bir sonnalı saylayı alakın. 21 съответстват на следните стандарти или други нормативни dokumentus su salyga, kad yra naudojami pagal mūsų nurodymus; 23 tad, ja lietoti atbilstoši ražodāja norādījumiem, atbilst sekojošiem standartiem un citiem normatīviem dokumentiem; 24 sú v zhode s nasledovnou(ými) normou(ami) alebo iným(i) 25 ürünün, talimatlarımıza göre kullanılması koşuluyla aşağıdaki standartlar normativnym(i) dokumentom(ami), za predpokladu, že sa používajú v 18 Direktivedr, ou amendamentele respective. 19 Direktive vsem sperembani. 20 Direktive samudatis Biga. 1a. Zi Alpevirus, creavire rakeelevens. 22 Direktivos sa papličninalis. 23 Direktivos su papličninalis. 24 Sinerrice, y platnom znem. 25 Objektivila se paplični silimos. 26 Sinerrice, y platnom znem. 27 Objektivila i platnom znem. 28 Objektivila i platnom znem. Direktiver, med senere ændringer. Direktiv, med förelagna ändringar. Direktiver, med forelatte endringar. Direktivejä, sellaisina kuin ne ovat muutettuina. irányelv(ek) és módosításaik rendelkezéseit. v platném znění. Smjemice, kako je izmijenjeno. z późniejszymi poprawkami. 01 Directhes, as amender. 02 Directhes, as amender. 03 Directhes, also Achdening. 03 Directhes, lelles que modifiess. 04 Richtlijnen, zoals geamendeerd. 05 Directhes, seguit he emmedato. 06 Directhes, come da modifica. 07 Ostyluvi, virus, groun richtens, confurme allengde em. 09 Directhes, confurme allengde em. <A> DAIKIN.TCF.034.B4/05-2021 DEKRA (NB0344) ** kaip nurodyta Techninēje konstrukcijos bytoje ir patvirtinta (taikomas modulis). Rizikos kategorija > 1 zip pat žiūrėkite il taikomas modulis > 1 zip pat ziūrėkite il taikomas modulis > 1 zip pat ziūrėkite il taikomas zip > 1 zip pat ziūrėkite il taikomas zip > 1 zip 22 * kaip nustatyta <A> ir kaip teigiamai nuspręsta pagal Sertifikata <C> kita puslapj. <E> VINÇOTTE nv (NB0026) <C> 2192529.0551-EMC <D> Daikin.TCFP.0184L ₹ 2 I 는 숙 ŝ Hiromitsu Iwasaki Director Ostend, 1st of September 2021 Zandvoordestraat 300, B-8400 Oostende, Belgium DAIKIN EUROPE N.V. | CE ATITIKTIES DEKLARACIJA
CE - ATIBITISTIBAS DEKLARACIJA
CE - VYRLI KSENE-ZHOOY
CE - UYGUNLIK BEYANI | 22 (© ankstexno pustapo tęsnys:
23 (©) epineksiąsis appuses furpiniajims.
24 (®) pokrażovanie z predchatzajúcej stany:
25 (®) örceki sayfadan devam: | Deklartakooni alla kuuluvate mudeline disanispelsifikatsioonid: Tpoekriwi oneuvopusuutu sa wogenirre, sa kovro ce ornaca peurapauysra: To modelju cizania specifikacijas, ruodelju, kurie susije su šia deklaracija: To modelju cizania specifikacijas, ruode mutecas ši deklaracija: Konstrukcis specifikacija modelju, krofen osa trijat otoo vylašenie: Bu bildirinni rigili odugu modellerin Tasarım Özellikleri: | 24 · Maxima'ny povoleny fak (PS): 4K- (bar) 1 * Thoma: American a povolenia tepoda (TS): 1 * Thoma: Mayliant a polydenia tepoda (TS): 1 * Thoma: Mayliant a polydenia tepoda (TS): 1 * Thoma: Mayliant a polydenia tepoda in anximalinym povolenym 1 * Thoma: Mayliant a polydenym a povolenym a polydenym 24 * Thoma: Osi; Mayliant a polydenym | 24 Názov a adresa cerfifiacio-tho úradu, ktorý kladne poslýlí zhodu so smernícou pre láktové zariadenia: Q2 Basinçil rejrizal Dreklifine ugunlik hussunda olumlu darak degelefendren Öraylanmis kuruluşun adı ve adresi: Q2 VINÇOTTE nv Jan Olieslagerslaan 35 1800 Vilvoorde, Belgium | |---|---|--|--
--| | CE - IZJAVA O SKLADNOSTI
CE - VAST AVISDEKLARATSIOON
CE - REKINAPALIJAR-3A-C-BOTBETCTBME | 19 © nadaljeranje s prejšnje stani:
20 © edmise Brekilje jarg.
21 © гродължение от предходната страница: | 82222 | 19. Maksimahi dovoljani tak (PS); <4€ (bar) • Mindiandiaksimaha dovoljani tak (PS); <4€ (bar) • Mindiandiaksimaha dovoljana temperatura (TS); • TSmar, Masičnan temperatura na nizkotačni strani <4. (°C) • TSmar, Masičnan temperatura na nizkotačni strani <4. (°C) • Hadro <49. (°C) • Minimaaline imperatura marižnica (PS); (AB) • Minimaaline imperatura marižnica (PS); (AB) • Minimaaline imperatura marižnica (PS); (AB) • Minimaaline imperatura (AB) (°C) • TSmar, Minimaaline imperatura marižnica (PS); (AB) • Sune turaseadrae seadstus: <4> (bar) Gorganizar marijaria emperatura (TS); • Harropoia en amperatura proproma en amentae. • Corragarrae: • Harropoia en amperatura (TS): en terropoia en metalizaria en (TS): • Harropoia en metalizaria en (TS): • | Ime in nasiov organa za upotavljanje sklatnosti, ki je pozitivno ocenil združljivost z Drektho o tlečni opremi: 40- Teavlatud organ, mis inhalas Suncesaadmete Direktiviga tihilduvust postilviseti, mni ja adress : 40- Haukencesaaneve at appec se y hushovobujeven kopra-u koviro ce e rovotesecus nonzowartamo nopovarcenie volto o ce e povotesecus nonzowartamo nopovarcenie volto Abskandopo statuko icis, kudi we keligima spremdim pagal sleginės janopa direktyta paradiminas ir adress: <40- Sentifikacijas kudi artieses: <40- Sentifikacijas kudi artieses: <40- Sentifikacijas kura ir devusi pozitivu sledzienu par atbilistību adress: <40- Sentifikacijas institucijas, kura ir devusi pozitivu sledzienu par atbilistību adress: <40- | | CE - IZJANA OJSKLAĐENOSTI ODESTA CE - REKLARACIA-ZODINOSCI CE - DEKLARACIA-ZODINOSCI CE - DECLARAŢIE-DE-CONFORMITATE | 15 ® nasbruk s prethodne strance: 16 ® forldnask az eköz oldaldi: 11 ® dag daszy z pogrzednej strony: 18 ® confrueres pagini anternare: | Tätä ilmoitusta koskevien maillen rakennemääritelly. Specifikace designu modelu, ke kterym se vzahuje toto prohlášení: Specifikacje dragna modelen kle keryes sovi zipava odnosi: A pien vylakozat atroglet klepez omodelelk tevracsi jellemzői: Specyfikacje konstrukcyjne modelel, ktorych dodyczy deklaracja: Specifikacjie de proiectar a le modelelor la cara se refer a cesská detarajle: Specifikacjie tehniörega načrta za modele, na katere se namsá ta deklaracja: | 19 'Najwed dopusien lak (PS) ⟨AP (bar) 'Najwed dopusien lak (PS) ⟨AP (bar) 'Yamn, Najiwa mopeanua u podruđunskog tak; ⟨AP (°C) 'Yamn, Najiwa mopeanua u podruđunskog tak; ⟨AP (°C) 'Yamn, Sandard ne imperatura vigo odgovara najvećem dopusienom laku (PS) ⟨AP (°C) 'Rasiladno seds vo ⟨AP 'Ossalwa sigurnsen nagrave za tak; ⟨AP (bar) 'Yamn Legkeebo megergedneko homersekket (TS); ⟨AP (bar) 'Yamn Legkeebo megergedneko homersekket (TS); ⟨AP (bar) 'Yamn Legkeebo megergedneko homersekket (TS); ⟨AP (bar) 'Hidiok zag ⟨AP 'Najvarnale odpusz zzale a brogendara (TS); ⟨AP 'Yamn Inajama keymala dopusz zzale a brogendara (TS); ⟨AP 'Yamn Reposable delita sigvene (PS) (AP (bar) 'Najvarnale odpusz zzale a brogendara (TS); ⟨AP 'Najvarnale odpusz zzale a brogendara (TS); ⟨AP 'Yamn kerhodnoky; ⟨AP 'Najvarnale odposa zad zasyedne (PS); ⟨AP (bar) 'Numer Broyczny oaz rok podukcji gart zakiskina; ⟨AP (bar) 'Numer Broyczny oaz rok podukcji gart zakiskina; ⟨AP (bar) 'Yamn representa minnima admisbile (TS); ⟨AP (bar) 'Yamn representa minnima admisbile (TS); ⟨AP (bar) 'Yamn representa minnima pa partea de ne siune joaski ⟨AP (°C) 'Yamn representa minnima admisbile (TS); ⟨AP (bar) 'Yamn representa minnima pa partea de ne siune joaski ⟨AP (°C) 'Yamn representa minnima admisbile (TS); ⟨AP (bar) 'Najvarneko dopeanuda minnima pa partea de ne siune joaski ⟨AP (°C) 'Yamn representa minnima admisbile (TS); ⟨ | 14 Název a adresa informoraného orgánu, který vydal pozitkvní posouzení 19 stody se směmíci o takových zařízeních: «De stody pozitkvní posoudbu o 20 uskladevnsti sa Smjerinoch za Brahu opremu. «De uskladevnsti sa Smjerinoch za Brahu opremu. «De Smychadevní sa Smjerinoch za Brahu opremu. «De Promázaní benedazéseke vondikozoti anjevienek valo medjelekšegeti gazok bejelenti szervezenhene še olme: «De 17 Nazwa i adres Janoski novýfikovanej, ktod wydała pozytywną opinje OD-zwa sperienia wymogów Dyrektywy dou. Uz aprzeń ciśnieniowych: 22 odoż za presume: «De numine si adresa organismului notlickat care a apreciat pozitiv z podrómrane su. Directha privínd echipamentele sub presume: «QP. | | MIDADE GE-ERK-ÆRING OM-SAMISIVAR
BRM GE-ILMOTTUS-I*FDENMIKAJBUDESTA
KLÆNING GE-PROHLÅSBNÍ-Ø-SHODË
TÄMMELSE | ior. 12 ®) forsetelse fra bringe side.
13 ® jafkna edell selfa sivulta:
14 ® pokračovan z předchozí stany:
sida. | | (PS) 4C (ban) te Imprendur (TS'): Itemprendur (A') temprendur (A') temprendur (A') temprendur (A') mem of glenstillingsar: se modellers bunksskill mem of glenstillingsar: se modellers bunksskill mem of glenstillingsar: se modellers bunksskill memperadur (TS'): memperadur (TS'): memperadur (TS'): memperadur (TS'): memperadur (TS'): memperadur (TS'): menty (A') ykk (PS): 4Ch (an) mer od glubskinnigsar: se modellers nammplat mer og glubskinnigsar: se modellers merkeplate mer og glubskinnigsar: se modellers merkeplate mer og glubskinnigsar: 4C (C) tradialaneneuel (TS') pis valmistus vousic kalsomallin nimikipi min fighus kal (PS): vec (bar) vin kak (PS): 4C (bar) mand kek (PS): 4C (bar) mand kek (PS): 4C (bar) mand kek (PS): 4C (bar) vin kek (PS): 4C (bar) mand ma | Navin og adresse på benyndiget organ, der har fiverlagde en positiv bedømmelse af, ad udstyret lever og til kravene i PED Übrektiv for fir fyrkærende byskrig. AD harm ods adress for det ammåda organ som godkånt uppyllandet av tyckutuskningstriektivets- Opperationspringstriektivets- Opperationspringstriekt | | NA CE - DECLARAÇÃO-DE-CONFORMIDADE TG - SARBIFINHE-CONFORTERINM CE - OVERENSTEMMILSEERINGENGE CE - FORSÁKRAN-OM-ÖVERENSTAMMILSE | orinnação de página anterior. 09 © popoporeever opelput quel orpanutus. 10 © forsáting fran forege side. 11 © forsáting fran foregesede sida. | 07 Topoloypowek Sykolocyoi ruw yovntklury ye na onrola oyeri(trani) öykuom; 08 Especificações de projecto dos modelos a que se aplica esta declaração: 09 Toporense zaparrepurstwa wogenek, acropaulo moncorres nacrosulee заявление. 10 Typespecifikationer for de modeller, som dema elektariation gelier: 11 Designspecifikationer for de modeller som dema deklaration giller. 12 Konstruksjonsspessifikasjoner for de modeller som berøres av denne deklarasjonen: | 10 | Nume e indirzzo del Ente riconosoulto de ha riscontab la conformità 10 Navinog alla Direttiva sulle apparecchiature a pressione «Ор- Oroqua ciu decidiouni по Konomoni, Econopioni un umagóne) пудкави пред ти Ости, Ости | | Y CE - DECLRACION-DE-CONFORMIDAD
CE - DICHIARAZIONE-DI-CONFORMITA
CE - AHAŒN EYMMOPOŒNE | 05 () confinuación de la página anterior: 06 () confinua dala pagina precedente: 07 () συνέχεα από την προηγούμενη σελίδα: | Design Specifications of the models to which this declaration relates: Konstruktionsdaten der Modelle auf die sich diese Erklärung bezieht. Specifications de conception des modeles aucquels se erapporte cette declaration: Ontwerspecificaties van de modellom waarop deze verklaring betrekking heeft. Especificaciones de diseno de bos modelos a los cuales haze referencia esta declaración: Specifiche di progetto dei modelli culfariferimento la presente dichiarazione: | S'; re side: <a> 06 | on thattung der 07 ment la 08 correction 2> 09 comment el ión < 4> 00 0 | | CE - DECLARATION-OF-CONFORMITY CE - KONFORMITÄTSERKLÄRUNG CE - DECLARATION-DE-CONFORMITE CE - CONFORMITEITSVERKLARING | 01 @ continuation of previous page: 02 @ Fortsetzung der vorherigen Selle: 03 © suite de la page précédente: 04 @
vervolg van vorige pagina: | 01 Design Specifications of the model 02 Konstruktionsdaten der Modelle au 03 Specifications de conneption des n 04 Ontwerspecificaties van de model 05 Especifications de dissin de los 06 Specifiche di progetto dei modelli | 10 • Maximum allowable pressure PS); < 4*C (bar) • Minfrummaximum allowable pressure PS); < 4*C (bar) • Minfrummaximum allowable bemograted (TS); • Thans. Salar set lerpressure or low pressure side; < 4>C (°) • Thans. Salar set lerpressure or responding with the maximum allowable pressure safety device: 4>P (bar) • Setting of pressure safety device: 4>P (bar) • Maninachimaxima zulässige Temperatur (TS); • Thans. Salagongstemperatur and red Nederlotudseelle: 4> (°C) • Thans. Salagongstemperature and red Nederlotudseelle: 4> (°C) • Thans. Salagongstemperature and red Nederlotudseelle: 4> (°C) • Thans. Salagongstemperature de dem maximal zulässigen Druck, PS) • Herstellung der Druck-Schutz-orrichtung; 4>P (Bar) • Einstellung der Druck-Schutz-orrichtung; 4>P (Bar) • Herstellung der Druck-Schutz-orrichtung; 4>P (Bar) • Herstellung summer und Herstellungsjehr: sehe Typenschild des Models • Pression maximale andress (PS); 44>P (par) • Tomperature minimum devile subression especially state of the schutzed fer pression maximale admisse (PS); 4A>P (par) • Tomperature minimum fer allar pression maximale solgheighte du modelse or maxima develandee empression die overeensiemt merde maxima develandee empression die overeensiemt merde maxima devile (PS); 4A>P (par) • Marimaallunaximaal toelander elemperaturu (1S); 4>P (par) • Marimaallunaximaal toelander elemperaturu (1S); 4>P (par) • Fatricagrummer en flantzoglegan zie naamplaat model • Patricagrummer en flantzoglegan zie naamplaat andel • Fatricagrummer flantzogl | 101 Name and address of the Notified body that judged positively on complaince with the Pressure Equipment Directive: 4D 20 Name und Affasse sed beharmlen Stelle, det positiv unter Einhaltung Dunckantigen-Rottlinie unteille: 4D 20 Nom et adresse del forganisme notifié qui a kalait positivement la conformité à di directive sur l'équipment de pression: 4D 40 Naamen adres van de angramatée de risantée die positie geordeeld heart et de conformitée de positifie pudaganatur. 4D 50 Nombre y directive conformitée (a Rottlinia Dudaganatur. 4D 51 Nombre y directive de l'organisme Notifiado ou que juzgio positivament complimento con la Directive en materia de Equipos de Presión: 4D 31 Nombre y directive en materia de Equipos de Presión: 4D 32 Nombre y directive en materia de Equipos de Presión: 4D 32 Nombre y directive en materia de Equipos de Presión: 4D 32 Nombre y directive en materia de Equipos de Presión: 4D 32 Nombre y directive en materia de Equipos de Presión: 4D 33 Nombre y directive en materia de Equipos de Presión: 4D 34 Nombre y directive en materia de Equipos de Presión: 4D 35 Nombre y directive en materia de Equipos de Presión: 4D 35 Nombre y directive en materia de Equipos de Presión: 4D 35 Nombre y directive en materia de Equipos de Presión: 4D 35 Nombre y directive en materia de Equipos de Presión: 4D 35 Nombre y directive en materia de Equipos de Presión: 4D 35 Nombre y directive en materia de Equipos de Presión: 4D 35 Nombre y directive en materia de Equipos de Presión: 4D 35 Nombre y directive en materia de Equipos de Presión: 4D 35 Nombre y directive en materia de Equipos de Presión: 4D 35 Nombre y directive en materia de Equipos de Presión: 4D | DAIKIN EUROPE N.V. Zandvoordestraat 300, B-8400 Oostende, Belgium Ostend, 1st of September 2021 Hiromitsu Iwasaki Director DAIKIN | T | abl | e of | contents | | | 7.4 | 7.3.3
7.3.4 | Slope-offset curve | |---|------|-----------------|--|-----------|-----|--------|---------------------------|---| | | | | | | | 7.4 | 7.4.1 | s menu | | 1 | Abo | out this | s document | 4 | | | 7.4.2 | Additional zone | | 2 | 0 | -161 - 1 | notelles aufats inatosotiona | - | | | 7.4.3 | Information | | 2 | - | | nstaller safety instructions | 5 | | 7.5 | Menu s | tructure: Overview installer settings | | 3 | | ut the | | 6 | 8 | Con | nmiss | ioning 3 | | | 3.1 | | unit | | | 8.1 | | st before commissioning | | | | 3.1.1 | To remove the accessories from the indoor unit | . 0 | | 8.2 | | ist during commissioning | | 4 | Unit | t insta | llation | 6 | | | 8.2.1
8.2.2 | To check the minimum flow rate | | | 4.1 | Prepari | ng the installation site | | | | 8.2.3 | To perform an operation test run | | | | 4.1.1 | Installation site requirements of the indoor unit | | | | 8.2.4 | To perform an actuator test run | | | | 4.1.2 | Special requirements for R32 units | | | | 8.2.5 | To perform an underfloor heating screed dryout | | | 4.2 | 4.1.3 | Installation patternsg and closing the unitg | | 9 | Han | d-ovo | r to the user 3 | | | 7.2 | 4.2.1 | To open the indoor unit | | 3 | Hai | iu-ove | to the user | | | | 4.2.2 | To close the indoor unit | | 10 | Tec | hnical | data 4 | | | 4.3 | Mountir | ng the indoor unit | 14 | | 10.1 | | diagram: Indoor unit | | | | 4.3.1 | To install the indoor unit | . 14 | | 10.2 | Wiring | diagram: Indoor unit | | | | 4.3.2 | To connect the drain hose to the drain | . 15 | | | | | | 5 | Pipi | ng ins | stallation | 15 | 1 | | ۸h | out this document | | | 5.1 | Prepari | ng refrigerant piping | 15 | - 1 | | Αb | out this document | | | | 5.1.1 | Refrigerant piping requirements | | Tai | rget a | udience | | | | F 0 | 5.1.2 | Refrigerant piping insulation | | | _ | ed instal | | | | 5.2 | 5.2.1 | ting refrigerant piping
To connect the refrigerant piping to the indoor unit | | | | | | | | 5.3 | | ng water piping | | Do | cume | ntation | set | | | 0.0 | 5.3.1 | To check the water volume and flow rate | | | | | is part of a documentation set. The complete s | | | | 5.3.2 | Third-party tank requirements | | cor | nsists | of: | | | | 5.4 | Connec | cting water piping | 16 | - (| Gener | al safet | y precautions: | | | | 5.4.1 | To connect the water piping | | | Safe | ety instru | uctions that you must read before installing | | | | 5.4.2 | To fill the water circuit | | | Forr | r
nat [.] Par | per (in the box of the indoor unit) | | | | 5.4.3
5.4.4 | To fill the domestic hot water tank | | | | tion ma | · · · · · · · · · · · · · · · · · · · | | 6 | Elec | | · · · · | 17 | | • | | for basic usage | | 6 | 6.1 | | installation electrical compliance | | | | Ū | per (in the box of the indoor unit) | | | 6.2 | | nes when connecting the electrical wiring | | | | | | | | 6.3 | | ctions to the indoor unit | | . (| Jser r | eterenc | e guide: | | | | 6.3.1 | To connect the main power supply | . 19 | | | | ep-by-step instructions and background information | | | | 6.3.2 | To connect the backup heater power supply | 20 | | for b | asic an | d advanced usage | | | | 6.3.3 | To connect the shut-off valve | | | | - | gital files on http://www.daikineurope.com/suppor | | | | 6.3.4 | To connect the electricity meters | | | and | -manual | s/product-information/ | | | | 6.3.5
6.3.6 | To connect the domestic hot water pump To connect the alarm output | | • 1 | nstall | ation m | anual – Outdoor unit: | | | | 6.3.7 | To connect the space cooling/heating ON/OFF | . 20 | | Insta | allation i | nstructions | | | | | output | 23 | | Forr | nat [.] Par | per (in the box of the outdoor unit) | | | | 6.3.8 | To connect the changeover to external heat source | | | | | anual – Indoor unit: | | | | 6.3.9
6.3.10 | To connect the power consumption digital inputs To connect the safety thermostat (normally closed | . 24 | | | | | | | | 0.5.10 | contact) | 25 | | | | nstructions | | | | 6.3.11 | To connect a Smart Grid | 25 | | | | per (in the box of the indoor unit) | | 7 | Con | ifigura | ition | 27 | | | | ence guide: | | | 7.1 | Overvie | ew: Configuration | 27 | | | | of the installation, good practices, reference | | | | 7.1.1 | To access the most used commands | | | data | | | | | 7.2 | | ration wizard | | | | _ | gital files on http://www.daikineurope.com/suppor
s/product-information/ | | | | 7.2.1
7.2.2 | Configuration wizard: Language Configuration wizard: Time and date | | | | | • | | | | 7.2.3 | Configuration wizard: System | | | | | ook for optional equipment: | | | | 7.2.4 | Configuration wizard: Backup heater | | | Add | itional ir | fo about how to install optional equipment | | | | 7.2.5 | Configuration wizard: Main zone | 31 | | | | per (in the box of the indoor unit) + Digital files of | | | | 7.2.6 | Configuration wizard: Additional zone | | | | | daikineurope.com/support-and-manuals/product- | | | 7.0 | 7.2.7 | Configuration wizard: Tank | | | ınfoı | mation/ | | | | 7.3 | Weathe 7.3.1 | er-dependent curve | | | | | of the supplied documentation may be available of | | | | 7.3.1 | o into | . 33 | the | regio | nal Daik | in website or via your dealer. | The original documentation is written in English. All other languages are translations. #### Technical engineering data - A subset of the latest technical data is available on the regional Daikin website (publicly accessible). - The full set of latest technical data is available on the Daikin Business Portal (authentication required). #### Online tools In addition to the documentation set, some online tools are available for installers: #### Daikin Technical Data Hub - Central hub for technical specifications of the unit, useful tools, digital resources, and more. - Publicly accessible via
https://daikintechnicaldatahub.eu. #### Heating Solutions Navigator - Digital toolbox that offers a variety of tools to facilitate the installation and configuration of heating systems. - To access Heating Solutions Navigator, registration to the Stand By Me platform is required. For more information, see https://professional.standbyme.daikin.eu. #### Daikin e-Care - Mobile app for installers and service technicians that allows you to register, configure and troubleshoot heating systems. - The mobile app can be downloaded for iOS and Android devices using the QR codes below. Registration to the Stand By Me platform is required to access the app. App Store # 2 Specific installer safety instructions Always observe the following safety instructions and regulations. Installation site (see "4.1 Preparing the installation site" [▶ 6]) #### **WARNING** The appliance shall be stored in a room without continuously operating ignition sources (example: open flames, an operating gas appliance or an operating electric heater). #### WARNING DO NOT reuse refrigerant piping that has been used with any other refrigerant. Replace the refrigerant pipes or clean thoroughly. #### WARNING Follow the service space dimensions in this manual for correct installation of the unit. See "4.1.1 Installation site requirements of the indoor unit" [> 6]. Special requirements for R32 (see "4.1.2 Special requirements for R32 units" [> 7]) #### WARNING - Do NOT pierce or burn. - Do NOT use means to accelerate the defrosting process or to clean the equipment, other than those recommended by the manufacturer. - Be aware that R32 refrigerant does NOT contain an odour. #### **WARNING** The appliance shall be stored so as to prevent mechanical damage and in a well-ventilated room without continuously operating ignition sources (example: open flames, an operating gas appliance or an operating electric heater). #### **WARNING** Make sure installation, servicing, maintenance and repair comply with instructions from Daikin and with applicable legislation and are executed ONLY by authorised persons. Opening and closing the unit (see "4.2 Opening and closing the unit" [> 13]) DANGER: RISK OF ELECTROCUTION #### DANGER: RISK OF BURNING/SCALDING Mounting the indoor unit (see "4.3 Mounting the indoor unit" [▶ 14]) #### **WARNING** Fixing method of the indoor unit MUST be in accordance with the instructions from this manual. See "4.3 Mounting the indoor unit" [• 14]. Piping installation (see "5 Piping installation" [▶ 15]) #### WARNING Field piping method MUST be in accordance with the instructions from this manual. See "5 Piping installation" [> 15]. Electrical installation (see "6 Electrical installation" [▶ 17]) #### **DANGER: RISK OF ELECTROCUTION** # WARNING Electrical wiring connection method MUST be in accordance with the instructions from: - This manual. See "6 Electrical installation" [▶ 17]. - The wiring diagram, which is delivered with the unit, located on the inside of the indoor unit switch box cover. For a translation of its legend, see "10.2 Wiring diagram: Indoor unit" [> 41]. #### WARNING - All wiring MUST be performed by an authorised electrician and MUST comply with the applicable legislation. - Make electrical connections to the fixed wiring. - All components procured on-site and all electrical construction MUST comply with the applicable legislation. EBBH/X11+16DF Daikin Altherma 3 R W 4P643600-1B – 2021.10 #### WARNING If the supply cord is damaged, it MUST be replaced by the manufacturer, its service agent or similarly qualified persons in order to avoid a hazard. #### WARNING ALWAYS use multicore cable for power supply cables. #### CAUTION Do NOT push or place redundant cable length in the unit. #### **WARNING** The backup heater MUST have a dedicated power supply and MUST be protected by the safety devices required by the applicable legislation. #### **CAUTION** If the indoor unit has a tank with a built-in electrical booster heater, use a dedicated power circuit for the backup heater and booster heater. NEVER use a power circuit shared by another appliance. This power circuit MUST be protected with the required safety devices according to the applicable legislation. #### CAUTION To guarantee the unit is completely earthed, ALWAYS connect the backup heater power supply and the earth cable. #### INFORMATION Details of type and rating of fuses, or rating of circuit breakers are described in "6 Electrical installation" [▶ 17]. Commissioning (see "8 Commissioning" [▶ 37]) #### **WARNING** Commissioning method MUST be in accordance with the instructions from this manual. See "8 Commissioning" [> 37]. #### WARNING Air purging heat emitters or collectors. Before you purge air from heat emitters or collectors, check if \bigcirc or \bigcirc is displayed on the home screen of the user interface. - If not, you can purge air immediately. - If yes, make sure that the room where you want to purge air is sufficiently ventilated. Reason: Refrigerant might leak into the water circuit, and subsequently into the room when you purge air from the heat emitters or collectors. # 3 About the box ## 3.1 Indoor unit - At delivery, the unit MUST be checked for damage. Any damage MUST be reported immediately to the claims agent of the carrier. - Bring the packed unit as close as possible to its final installation position to prevent damage during transport. - Unpack the indoor unit completely according to the instructions mentioned on the unpacking instructions sheet. # 3.1.1 To remove the accessories from the indoor unit Some accessories are located inside the unit. For more information on opening the unit, see "4.2.1 To open the indoor unit" [> 13]. - a General safety precautions - **b** Addendum book for optional equipment - c Indoor unit installation manual - d Operation manual - Sealing ring for shut-off valve - f Shut-off valve - g Overpressure bypass valve - h Wall bracket # 4 Unit installation # 4.1 Preparing the installation site # WARNING The appliance shall be stored in a room without continuously operating ignition sources (example: open flames, an operating gas appliance or an operating electric heater). # WARNING DO NOT reuse refrigerant piping that has been used with any other refrigerant. Replace the refrigerant pipes or clean thoroughly. # 4.1.1 Installation site requirements of the indoor unit - The indoor unit is designed for indoor installation only and for the following ambient temperatures: - Space heating operation: 5~30°C - Space cooling operation: 5~35°C - Domestic hot water production: 5~35°C # INFORMATION Cooling is only applicable in case of: - Reversible models - Heating only models + conversion kit (EKHBCONV*) - Mind the following measurements guidelines: | Maximum refrigerant piping length ^(a) between indoor unit and outdoor unit | 50 m | |---|------| | Minimum refrigerant piping length ^(a) between indoor unit and outdoor unit | 3 m | 4P643600-1B - 2021.10 | Maximum height difference between indoor unit and outdoor unit | 30 m | |---|------| | Maximum height difference between indoor unit and domestic hot water tank | 5 m | | Maximum distance between indoor unit and domestic hot water tank | 10 m | | Maximum distance between indoor unit and 3-way valve (for installations with domestic hot water tank) | 10 m | ⁽a) Refrigerant piping length is the one-way length of liquid piping. • Mind the following spacing installation guidelines: Height measured from the bottom of the casing to the floor #### 4.1.2 Special requirements for R32 units Because the total refrigerant charge in the system is ≥1.84 kg, the room where you install the indoor unit must comply with the conditions described in "4.1.3 Installation patterns" [▶ 8]. # WARNING - Do NOT pierce or burn. - Do NOT use means to accelerate the defrosting process or to clean the equipment, other than those recommended by the manufacturer. - Be aware that R32 refrigerant does NOT contain an odour. #### WARNING The appliance shall be stored so as to prevent mechanical damage and in a well-ventilated room without continuously operating ignition sources (example: open flames, an operating gas appliance or an operating electric heater) and have a room size as specified below. ## NOTICE - Do NOT re-use joints and copper gaskets which have been used already. - Joints made in installation between parts of refrigerant system shall be accessible for maintenance purposes. #### WARNING Make sure installation, servicing, maintenance and repair comply with instructions from Daikin and with applicable legislation and are executed ONLY by authorised persons. #### **NOTICE** - Pipework shall be protected from physical damage. - Installation of pipework shall be kept to a minimum. #### 4.1.3 Installation patterns Depending on the type of room in which you install the indoor unit, different installation patterns are allowed: | Room type | Allowed patterns | |--|------------------| | Living room, kitchen, garage, attic, basement, storage room | 1, 2, 3 | | Technical room (i.e. room that is NEVER occupied by persons) | 1, 2, 3, 4 | | A | Room A (= room where indoor unit is installed) | |----------------------|--| | 3 | Room B (= adjacent room) | | а | If no chimney is installed, this is the default point of release in case of refrigerant leakage. | | | If needed, you can connect a chimney here: | | | Unit's connection point for the chimney = 1" male thread
Use a compatible counterpart for the chimney. | | | Make sure the connection is airtight. | | b | Chimney | | c1 | Bottom opening for natural
ventilation | | c2 | Top opening for natural ventilation | | H _{release} | Actual release height: | | | Without chimney. From floor to top of the unit. (minimum 1.95 m) | | | (1949): With chimney. From floor to top of the chimney. | | 33 | Installation with chimney connected to the outside. The release height is not relevant. There are no requirements to the minimum floor area. | | N/A | Not applicable | | | | 8 Minimum floor area / Release height: - The minimum floor area requirements depend on the release height of the refrigerant in case of a leakage. The higher the release height, the lower the minimum floor area requirements. - The default point of release (without chimney) is at the top of the unit. To decrease the minimum floor area requirements, you can increase the release height by installing a chimney. If the chimney leads outside of the building, there are no requirements anymore to the minimum floor area. - You can also take advantage of the floor area of the adjacent room (= room B) by providing ventilation openings between the two rooms. - For installations in technical rooms (i.e. room that is NEVER occupied by persons), additionally to patterns 1, 2 and 3, you can also use PATTERN 4. For this pattern there are no requirements to the minimum floor area if you provide 2 openings (one at the bottom, one at the top) between the room and the outside to ensure natural ventilation. The room must be protected from frost. #### **PATTERN 1** # **PATTERN 2** #### **PATTERN 2: Conditions ventilation openings** If you want to take advantage of the floor area of the adjacent room, you must provide 2 openings (one at the bottom, one at the top) between the rooms to ensure natural ventilation. The openings must comply with the following conditions: # Bottom opening (A_{nv}): - Must be a permanent opening that cannot be closed. - Must be completely located between 0 and 300 mm from the floor. - Must be ≥A_{nv-min} (minimum bottom opening area). - ≥50% of the required opening area $A_{\text{nv-min}}$ must be ≤200 mm from the floor. - The bottom of the opening must be ≤100 mm from the floor. - If the opening starts from the floor, the height of the opening must be ≥20 mm. #### Top opening: - Must be a permanent opening that cannot be closed. - Must be ≥50% of A_{nv-min} (minimum bottom opening area). - Must be ≥1.5 m from the floor. Installation manual #### **PATTERN 3** # Tables for PATTERN 1, 2 and 3 #### Table 1: Minimum floor area For intermediate refrigerant charges, use the row with the higher value. Example: If the refrigerant charge is 4.3 kg, use the row of 4.5 kg. | | Minimum floor area (m²) | | | | | | | | | | | | |-------------|-------------------------|------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--| | Charge (kg) | | Release height without chimney (m) | | | | | | | | | | | | | 1.95 | 2.05 | 2.15 | 2.25 | 2.35 | 2.45 | 2.55 | 2.65 | 2.75 | 2.85 | 2.95 | | | 3.8 | 11.64 | 10.53 | 9.57 | 8.74 | 8.01 | 7.37 | 6.80 | 6.30 | 6.00 | 5.79 | 5.59 | | | 4 | 12.89 | 11.67 | 10.61 | 9.68 | 8.88 | 8.17 | 7.54 | 6.98 | 6.48 | 6.10 | 5.89 | | | 4.5 | 16.32 | 14.76 | 13.42 | 12.26 | 11.23 | 10.34 | 9.54 | 8.84 | 8.20 | 7.64 | 7.13 | | | 5 | 20.14 | 18.23 | 16.57 | 15.13 | 13.87 | 12.76 | 11.78 | 10.91 | 10.13 | 9.43 | 8.80 | | | 5.5 | 24.37 | 22.05 | 20.05 | 18.31 | 16.78 | 15.44 | 14.25 | 13.20 | 12.26 | 11.41 | 10.65 | | | 5.8 | 27.11 | 24.53 | 22.30 | 20.36 | 18.66 | 17.17 | 15.85 | 14.68 | 13.63 | 12.69 | 11.84 | | Table 2: Minimum release height Take the following into account: - For intermediate floor areas, use the column with the lower value. Example: If the floor area is 22.50 m², use the column of 20.00 m². - For intermediate refrigerant charges, use the row with the higher value. **Example:** If the refrigerant charge is 4.3 kg, use the row of 4.5 kg. - (*): The release height of the unit without chimney (minimum 1.95 m) is already higher than the minimum required release height. => OK (no chimney needed). | Minimum release height (m) | | | | | | | | | | | | | |----------------------------|------|-------|---------|----------|-------|--|--|--|--|--|--|--| | Charge (kg) | | | Floor a | rea (m²) | | *) (*) (*) (*) (*) (*) (*) (*) (*) (*) (| | | | | | | | | 5.00 | 10.00 | 15.00 | 20.00 | 25.00 | 30.00 | | | | | | | | 3.8 | 3.30 | 2.10 | (*) | (*) | (*) | (*) | | | | | | | | 4 | 3.47 | 2.21 | (*) | (*) | (*) | (*) | | | | | | | | 4.5 | 3.91 | 2.49 | 2.03 | (*) | (*) | (*) | | | | | | | | 5 | 4.34 | 2.77 | 2.26 | 1.96 | (*) | (*) | | | | | | | | 5.5 | 4.78 | 3.04 | 2.49 | 2.15 | (*) | (*) | | | | | | | | 5.8 | 5.04 | 3.21 | 2.62 | 2.27 | 2.03 | (*) | | | | | | | #### Table 3: Maximum chimney length When installing a chimney, the chimney length must be less than the maximum chimney length. - · Use the columns with the correct refrigerant charge. For intermediate refrigerant charges, use the columns with the higher value. Example: If the refrigerant charge is 4.0 kg, use the columns of 5.8 kg. - For intermediate diameters, use the column with the lower value. Example: If the diameter is 23 mm, use the column of 22 mm. - · X: Not allowed 12 | Maximum chimney length (m) - In cas | e of Refrigera | nt charge=3.8 | 3 kg (and T=6 | 0°C) | | In ca | se of Refrige | ant charge=5 | i.8 kg (and T= | 60°C) | |-------------------------------------|----------------|---------------------------------|---------------|-------|--------|-------|---------------|---------------|----------------|-------| | Chimney | | Inside diameter of chimney (mm) | | | | | Inside dia | meter of chin | nney (mm) | | | | 20 | 22 | 24 | 26 | 28 | 20 | 22 | 24 | 26 | 28 | | Straight pipe | 19.03 | 33.90 | 55.16 | 84.54 | 124.06 | 3.37 | 9.47 | 18.40 | 30.91 | 47.91 | | 1× 90° elbow | 17.23 | 31.92 | 53.00 | 82.20 | 121.54 | 1.57 | 7.49 | 16.24 | 28.57 | 45.39 | | 2× 90° elbow | 15.43 | 29.94 | 50.84 | 79.86 | 119.02 | Х | 5.51 | 14.08 | 26.23 | 42.87 | | 3× 90° elbow | 13.63 | 27.96 | 48.68 | 77.52 | 116.50 | Х | 3.53 | 11.92 | 23.89 | 40.35 | #### Table 4: Minimum bottom opening area for natural ventilation Take the following into account: - · Use the correct table. For intermediate refrigerant charges, use the table with the higher value. Example: If the refrigerant charge is 4.3 kg, use the table of 4.8 kg. - For intermediate floor areas, use the column with the lower value. Example: If the floor area is 12.50 m², use the column of 10.00 m². - For intermediate release height values, use the row with the lower value. Example: If the release height is 2.20 m, use the row of 2.1 m. - A_{nv}: Bottom opening area for natural ventilation. - A_{nv-min}: Minimum bottom opening area for natural ventilation. - (*): Already OK (no ventilation openings needed). | A _{nv-min} (dm²) – In case of Refrigerant charge=3.8 kg | | | | | | | | | | | |--|------|-------|------------------|------------------------|-----------------|-------|-------|--|--|--| | Release height (m) | | | Floor area of ro | oom A (m²) [! NOT rooi | m A + room B !] | | | | | | | | 5.00 | 10.00 | 15.00 | 20.00 | 25.00 | 30.00 | 35.00 | | | | | 1.95 | 3.5 | 0.7 | (*) | (*) | (*) | (*) | (*) | | | | | 2.1 | 3.0 | (*) | (*) | (*) | (*) | (*) | (*) | | | | | 2.25 | 2.5 | (*) | (*) | (*) | (*) | (*) | (*) | | | | | 2.4 | 2.1 | (*) | (*) | (*) | (*) | (*) | (*) | | | | | 2.55 | 1.7 | (*) | (*) | (*) | (*) | (*) | (*) | | | | | 2.7 | 1.3 | (*) | (*) | (*) | (*) | (*) | (*) | | | | | 2.85 | 1.0 | (*) | (*) | (*) | (*) | (*) | (*) | | | | | 3 | 0.6 | (*) | (*) | (*) | (*) | (*) | (*) | | | | | A _{m-min} (dm²) – In case of Refrigerant charge=4.8 kg | | | | | | | | |---|------|---|-------|-------|-------|-------|-------| | Release height (m) | | Floor area of room A (m²) [! NOT room A + room B !] | | | | | | | | 5.00 | 10.00 | 15.00 | 20.00 | 25.00 | 30.00 | 35.00 | | 1.95 | 5.7 | 3.2 | 1.4 | (*) | (*) | (*) | (*) | | 2.1 | 5.2 | 2.5 | 0.4 | (*) | (*) | (*) | (*) | | 2.25 | 4.6 | 1.7 | (*) | (*) | (*) | (*) | (*) | | 2.4 | 4.1 | 1.1 | (*) | (*) | (*) | (*) | (*) | | 2.55 | 3.7 | 0.4 | (*) | (*) | (*) | (*) | (*) | | 2.7 | 3.2 | (*) | (*) | (*) | (*) | (*) | (*) | | 2.85 | 2.8 | (*) | (*) | (*) | (*) | (*) | (*) | | 3 | 2.4 | (*) | (*) | (*) | (*) | (*) | (*) | | A _{nv-min} (dm²) – In case of Refrigerant charge=5.8 kg | | | | | | | | |--|---|-------|-------|-------|-------|-------|-------| | Release height (m) | Floor area of room A (m²) [! NOT room A + room B !] | | | | | | | | | 5.00 | 10.00 | 15.00 | 20.00 | 25.00 | 30.00 | 35.00 | | 1.95 | 8.0 | 5.8 | 4.2 | 2.5 | 0.7 | (*) | (*) | | 2.1 | 7.3 | 4.9 | 3.1 | 1.3 | (*) | (*) | (*) | | 2.25 | 6.7 | 4.1 | 2.1 | 0.1 | (*) | (*) | (*) | | 2.4 | 6.1 | 3.3 | 1.2 | (*) | (*) | (*) | (*) | | 2.55 | 5.6 | 2.6 | 0.4 | (*) | (*) | (*) | (*) | | 2.7 | 5.1 | 2.0 | (*) | (*) | (*) | (*) | (*) | | 2.85 | 4.7 | 1.4 | (*) | (*) | (*) | (*) | (*) | | 3 | 4.2 | 0.8 | (*) | (*) | (*) | (*) | (*) | #### **PATTERN 4** PATTERN 4 is only allowed for installations in technical rooms (i.e. room that is NEVER occupied by persons). For this pattern there are no requirements to the minimum floor area if you provide 2 openings (one at the bottom, one at the top) between the room and the outside to ensure natural ventilation. The room must be protected from frost. | A | Unoccupied room where the indoor unit is installed. | |---|---| | | Must be protected from frost. | - a1 A_{nv}: Bottom opening for natural ventilation between the unoccupied room and the outside. - Must be a permanent opening that cannot be closed. - Must be above ground
level. - Must be completely located between 0 and 300 mm from the floor of the unoccupied room. - Must be ≥A_{nv-min} (minimum bottom opening area as specified in the table below). - ≥50% of the required opening area A_{nv-min} must be ≤200 mm from the floor of the unoccupied room. - The bottom of the opening must be ≤100 mm from the floor of the unoccupied room. - If the opening starts from the floor, the height of the opening must be ≥20 mm. - **a2 Top opening** for natural ventilation between room A and the outside. - Must be a permanent opening that cannot be closed. - Must be ≥50% of A_{nv-min} (minimum bottom opening area as specified in the table below). - Must be ≥1.5 m from the floor of the unoccupied room. #### A_{nv-min} (minimum bottom opening area for natural ventilation) The minimum bottom opening area for natural ventilation between the unoccupied room and the outside depends on the total refrigerant in the system. For intermediate refrigerant charges, use the row with the higher value. **Example:** If the refrigerant charge is 4.3 kg, use the row of 4.4 kg. | Total refrigerant charge (kg) | A _{nv-min} (dm²) | |-------------------------------|---------------------------| | 3.8 | 9.9 | | 4 | 10.1 | | 4.2 | 10.4 | | 4.4 | 10.6 | | 4.6 | 10.9 | | 4.8 | 11.1 | | 5 | 11.3 | | 5.2 | 11.5 | | 5.4 | 11.8 | | Total refrigerant charge (kg) | A _{nv-min} (dm²) | |-------------------------------|---------------------------| | 5.6 | 12.0 | | 5.8 | 12.2 | # 4.2 Opening and closing the unit ## 4.2.1 To open the indoor unit #### Overview - 1 Front panel - 2 Switch box cover - Switch box - 4 User interface panel #### Open 1 Remove the front panel. 2 If you have to connect electrical wiring, remove the switch box 3 If you have to do work behind the switch box, open the switch box. 4 If you have to do work behind the user interface panel or upload new software into the user interface, open the user interface panel. 5 Optional: Remove the user interface panel. #### NOTICE If you remove the user interface panel, also disconnect the cables from the back of the user interface panel to prevent damage. # 4.2.2 To close the indoor unit - 1 Reinstall the user interface panel. - 2 Reinstall the switch box cover and close the switch box. - 3 Reinstall the front panel. #### NOTICE When closing the indoor unit cover, make sure that the tightening torque does NOT exceed 4.1 N•m. # 4.3 Mounting the indoor unit #### 4.3.1 To install the indoor unit 1 Fix the wall bracket (accessory) to the wall (level) with 2× Ø8 mm bolts. a Optional: If you want to fix the unit to the wall from inside the unit, provide an additional screw plug. #### 2 Lift the unit. - 3 Attach the unit to the wall bracket: - Tilt the top of the unit against the wall at the position of the wall bracket. - Slide the bracket on the back of the unit over the wall bracket. Make sure the unit is fixed properly. Optional: If you want to fix the unit to the wall from inside the unit: - Remove the upper front panel, and open the switch box. See "4.2.1 To open the indoor unit" [> 13]. - Remove the EPP block. - Fix the unit to the wall with an Ø8 mm screw. - · Reattach the EPP block. #### 4.3.2 To connect the drain hose to the drain Water coming from the pressure relief valve is collected in the drain pan. You must connect the drain pan to an appropriate drain according to the applicable legislation. 1 Connect a drain tube (field supply) to the drain pan connector as follows: a Drain pan connector It is recommended to use a tundish to collect the water. # 5 Piping installation # 5.1 Preparing refrigerant piping #### 5.1.1 Refrigerant piping requirements Also see "4.1.2 Special requirements for R32 units" [\blacktriangleright 7] for additional requirements. - Piping length: See "4.1.1 Installation site requirements of the indoor unit" [> 6]. - Piping material: Phosphoric acid deoxidised seamless copper. - Piping connections: Only flare and brazed connections are allowed. The indoor and outdoor units have flare connections. Connect both ends without brazing. If brazing should be needed, take the guidelines in the installer reference guide into account. - Flare connections: Only use annealed material. - Piping diameter: | Liquid piping | Ø9.5 mm (3/8") | |---------------|-----------------| | Gas piping | Ø15.9 mm (5/8") | #### Piping temper grade and thickness: | Oute | r diameter
(Ø) | Temper grade | Thickness (t) ^(a) | | |--------|-------------------|--------------|------------------------------|---| | 9.5 m | m (3/8") | Annealed (O) | ≥0.8 mm | Ø | | 15.9 n | nm (5/8") | Annealed (O) | ≥1.0 mm | | ⁽a) Depending on the applicable legislation and the maximum working pressure of the unit (see "PS High" on the unit name plate), larger piping thickness might be required. ## 5.1.2 Refrigerant piping insulation - Use polyethylene foam as insulation material: - with a heat transfer rate between 0.041 and 0.052 W/mK (0.035 and 0.045 kcal/mh°C) - with a heat resistance of at least 120°C - Insulation thickness | Pipe outer diameter (\mathcal{O}_p) | Insulation inner
diameter (Ø _i) | Insulation thickness (t) | |---------------------------------------|--|--------------------------| | 9.5 mm (3/8") | 12~15 mm | ≥13 mm | | 15.9 mm (5/8") | 17~20 mm | ≥13 mm | If the temperature is higher than 30°C and the humidity is higher than RH 80%, the thickness of the insulation materials should be at least 20 mm to prevent condensation on the surface of the insulation. # 5.2 Connecting refrigerant piping See the installation manual of the outdoor unit for all guidelines, specifications and installation instructions. # 5.2.1 To connect the refrigerant piping to the indoor unit 1 Connect the liquid stop valve from the outdoor unit to the refrigerant liquid connection of the indoor unit. - a Refrigerant liquid connection - **b** Refrigerant gas connection - **2** Connect the gas stop valve from the outdoor unit to the refrigerant gas connection of the indoor unit. # 5.3 Preparing water piping #### NOTICE In case of plastic pipes, make sure they are fully oxygen diffusion tight according to DIN 4726. The diffusion of oxygen into the piping can lead to excessive corrosion. #### NOTICE Water circuit requirements. Make sure to comply with the water pressure and water temperature requirements below. For additional water circuit requirements, see the installer reference quide. - Water pressure Space heating/cooling circuit. The maximum water pressure is 3 bar. Provide adequate safeguards in the water circuit to ensure that the maximum pressure is NOT exceeded. The minimum water pressure to operate is 1 bar. - Water temperature. All installed piping and piping accessories (valve, connections,...) MUST withstand the following temperatures: # INFORMATION The following illustration is an example and might NOT match your system layout. # 5.3.1 To check the water volume and flow rate #### Minimum water volume Check that the total water volume in the installation is higher than the minimum water volume, the internal water volume of the indoor unit NOT included: | If | Then the minimum water volume is | | |-------------------|----------------------------------|--| | Cooling operation | 20 I | | | Heating operation | 20 | | #### NOTICE When circulation in each space heating/cooling loop is controlled by remotely controlled valves, it is important that the minimum water volume is guaranteed, even if all of the valves are closed. #### Minimum flow rate Check that the minimum flow rate in the installation is guaranteed in all conditions. For this purpose, use the overpressure bypass valve delivered with the unit, and respect the minimum water volume. | If operation is | Then the minimum required flow rate is | | |-------------------------------|--|--| | Cooling | 16 l/min | | | Heating/defrost | 22 l/min | | | Domestic hot water production | | | #### NOTICE When circulation in each or certain space heating loops is controlled by remotely controlled valves, it is important that the minimum flow rate is guaranteed, even if all valves are closed. In case the minimum flow rate cannot be reached, a flow error 7H will be generated (no heating or operation). See the installer reference guide for more information. See the recommended procedure as described in "8.2 Checklist during commissioning" [> 37]. #### 5.3.2 Third-party tank requirements In case of a third-party tank, the tank shall adhere to the following requirements: - The heat exchanger coil of the tank is ≥1.05 m² and ≤3.7 m². - The tank thermistor must be located above the heat exchanger coil. - The booster heater must be located above the heat exchanger coil. #### NOTICE **Performance.** Performance data for third-party tanks CANNOT be provided, and performance CANNOT be guaranteed. # 5.4 Connecting water piping #### 5.4.1 To connect the water piping #### NOTICE Do NOT use excessive force when connecting the piping. Deformation of the piping can cause malfunctioning of the unit To facilitate service and maintenance, 2 shut-off valves and 1 overpressure bypass valve are provided. Mount the shut-off valves on the space heating water inlet and space heating water outlet. To ensure the minimum flow rate (and prevent overpressure), install the overpressure bypass valve on the space heating water outlet. 1 Install the shut-off valves on the water pipes. - a Space heating/cooling Water OUT (screw connection, - Space heating/cooling Water IN (screw connection, 1") - 2 Screw the indoor unit nuts on the shut-off valves. - 3 Connect the field piping on the shut-off valves. - 4 In case of connection with the optional domestic hot water tank, see the installation manual of the domestic hot water tank. #### NOTICE Install air purge valves at all local high points. #### **NOTICE** **Overpressure bypass valve** (delivered as accessory). We recommend to install
the overpressure bypass valve in the space heating water circuit. - Mind the minimum water volume when choosing the installation location of the overpressure bypass valve (at the indoor unit, or at the collector). See "5.3.1 To check the water volume and flow rate" [> 16]. - Mind the minimum flow rate when adjusting the overpressure bypass valve setting. See "5.3.1 To check the water volume and flow rate" [* 16] and "8.2.1 To check the minimum flow rate" [* 38]. #### **NOTICE** In case an optional domestic hot water tank is installed: A pressure relief valve (field supply) with an opening pressure of maximum 10 bar (= 1 MPa) must be installed on the domestic cold water inlet connection in accordance with the applicable legislation. # 5.4.2 To fill the water circuit To fill the water circuit, use a field supply filling kit. Make sure you comply with the applicable legislation. #### **NOTICE** **Pump.** To prevent blocking of the pump rotor, commission the unit as quickly as possible after filling the water circuit. #### **INFORMATION** Make sure both air purge valves (one on the magnetic filter and one on the backup heater) are open. #### 5.4.3 To fill the domestic hot water tank See the installation manual of the domestic hot water tank. ## 5.4.4 To insulate the water piping The piping in the complete water circuit MUST be insulated to prevent condensation during cooling operation and reduction of the heating and cooling capacity. If the temperature is higher than 30°C and the humidity is higher than RH 80%, the thickness of the insulation materials should be at least 20 mm to prevent condensation on the surface of the insulation. # 6 Electrical installation # DANGER: RISK OF ELECTROCUTION #### WARNING ALWAYS use multicore cable for power supply cables. #### **INFORMATION** When installing field supply or option cables, foresee sufficient cable length. This will make it possible to open the switch box and gain access to other components during service. # 6.1 About electrical compliance Only for the backup heater of the indoor unit See "6.3.2 To connect the backup heater power supply" [> 20]. # 6.2 Guidelines when connecting the electrical wiring #### **Tightening torques** Indoor unit: | Item | Tightening torque (N•m) | |------------|-------------------------| | X1M | 2.45 ±10% | | X2M | 0.88 ±10% | | X5M | 0.88 ±10% | | X6M | 2.45 ±10% | | X7M, X8M | 2.45 ±10% | | X10M | 0.88 ±10% | | M4 (earth) | 1.47 ±10% | #### 6.3 Connections to the indoor unit | Item | Description | |---|--| | Power supply (main) | See "6.3.1 To connect the main power supply" [• 19]. | | Power supply (backup heater) | See "6.3.2 To connect the backup heater power supply" [▶ 20]. | | Shut-off valve | See "6.3.3 To connect the shut-off valve" [• 22]. | | Electricity meters | See "6.3.4 To connect the electricity meters" [> 22]. | | Domestic hot water pump | See "6.3.5 To connect the domestic hot water pump" [▶ 22]. | | Alarm output | See "6.3.6 To connect the alarm output" [▶ 23]. | | Space cooling/heating operation control | See "6.3.7 To connect the space cooling/heating ON/OFF output" [• 23]. | # 6 Electrical installation | Item | Description | | |-------------------------------------|--|--| | Changeover to | See "6.3.8 To connect the changeover to | | | external heat source control | external heat source" [> 24]. | | | Power consumption digital inputs | See "6.3.9 To connect the power consumption digital inputs" [▶ 24]. | | | Safety thermostat | See "6.3.10 To connect the safety | | | | thermostat (normally closed contact)" [> 25]. | | | Smart Grid | See "6.3.11 To connect a Smart Grid" [• 25]. | | | Room thermostat (wired or wireless) | See below table. | | | | Wires: 0.75 mm² | | | | Maximum running current: 100 mA | | | | For the main zone: | | | | • [2.9] Control | | | | • [2.A] Thermostat type | | | | For the additional zone: | | | | • [3.A] Thermostat type | | | | • [3.9] (read-only) Control | | | Heat pump convector | There are different controllers and setups possible for the heat pump convectors. | | | | Depending on the setup, you also need to implement a relay (field supply, see addendum book for optional equipment). | | | | For more information, see: | | | | Installation manual of the heat
pump convectors | | | | Installation manual of the heat
pump convector options | | | | Addendum book for optional equipment | | | | Wires: 0.75 mm² | | | | Maximum running current: 100 mA | | | | For the main zone: | | | | • [2.9] Control | | | | • [2.A] Thermostat type | | | | For the additional zone: | | | | • [3.A] Thermostat type | | | | • [3.9] (read-only) Control | | | Remote outdoor | See: | | | sensor | Installation manual of the remote
outdoor sensor | | | | Addendum book for optional equipment | | | | Wires: 2×0.75 mm² | | | | [9.B.1]=1 (External sensor = Outdoor) | | | | [9.B.2] Ext. amb. sensor offset | | | | [9.B.3] Averaging time | | | L | 1 1 | | | Item | Description | | | |---------------------------------------|---|--|--| | Remote indoor sensor | See: | | | | | Installation manual of the remote indoor sensor | | | | | Addendum book for optional equipment | | | | | Wires: 2×0.75 mm² | | | | | [9.B.1]=2 (External sensor = Room) | | | | | [1.7] Room sensor offset | | | | Human Comfort
Interface | See: | | | | interface | Installation and operation manual of
the Human Comfort Interface | | | | | Addendum book for optional equipment | | | | | Wires: 2×(0.75~1.25 mm²) | | | | | Maximum length: 500 m | | | | | [2.9] Control | | | | | [1.6] Room sensor offset | | | | (in case of DHW tank) | See: | | | | 3-way valve | Installation manual of the 3-way valve | | | | | Addendum book for optional equipment | | | | | Wires: 3×0.75 mm² | | | | | Maximum running current: 100 mA | | | | | [9.2] Domestic hot water | | | | (in case of DHW tank) | See: | | | | Domestic hot water tank thermistor | Installation manual of the domestic
hot water tank | | | | | Addendum book for optional equipment | | | | | Wires: 2 | | | | | The thermistor and connection wire (12 m) are delivered with the domestic hot water tank. | | | | | [9.2] Domestic hot water | | | | (in case of DHW tank) | See: | | | | Power supply for booster heater (from | Installation manual of the DHW tank | | | | indoor unit to DHW tank) | Addendum book for optional equipment | | | | | Wires: (2+GND)×2.5 mm² | | | | | [9.4] Booster heater | | | | (in case of DHW tank) | See: | | | | Power supply for booster heater (from | Installation manual of the domestic
hot water tank | | | | mains to indoor unit) | Addendum book for optional equipment | | | | | Wires: 2+GND | | | | | Maximum running current: 13 A | | | | | [9.4] Booster heater | | | | Item | Description | | |----------------|---|--| | LAN adapter | See: | | | | Installation manual of the LAN adapter | | | | Addendum book for optional equipment | | | | Wires: 2×(0.75~1.25 mm²). Must be sheathed. | | | | Maximum length: 200 m | | | | See installation manual of the LAN adapter | | | WLAN cartridge | See: | | | | Installation manual of the WLAN cartridge | | | | Installer reference guide | | | | | | | | [D] Wireless gateway | | | WLAN module | See: | | | | Installation manual of the WLAN module | | | | Addendum book for optional equipment | | | | Installer reference guide | | | | Use the cable delivered with the WLAN module. | | | | [D] Wireless gateway | | | Bizone kit | See: | | | | Installation manual of the bizone kit | | | | Addendum book for optional equipment | | | | Use the cable delivered with the bizone kit. | | | | [9.P] Bizone kit | | | for room thermostat (wired or wireless) | |---| |---| | In case of | See | |---|---| | Wireless room thermostat | Installation manual of the wireless
room thermostat | | | Addendum book for optional equipment | | Wired room thermostat without multi-zoning base | Installation manual of the wired room thermostat | | unit | Addendum book for optional equipment | | In case of | See | |---|--| | Wired room thermostat with multi-zoning base unit | Installation manual of the wired room
thermostat (digital or analogue) +
multi-zoning base unit | | | Addendum book for optional equipment | | | In this case: | | | You need to connect the wired
room thermostat (digital or
analogue) to the multi-zoning base
unit | | | You need to connect the multi-
zoning base unit to the outdoor unit | | | For cooling/heating operation, you
also need to implement a relay
(field supply, see addendum book
for optional equipment) | # 6.3.1 To connect the main power supply 1 Open the following (see "4.2.1 To open the indoor unit" [> 13]): | 1 | Front panel | 2 3 | |---|------------------|-----| | 2 | Switch box cover | | | 3 | Switch box | | 2 Connect the main power supply. # In case of normal kWh rate power supply | Interconne
cable (= n
power sup | nain | : (3+GND)×1.5 mm² | |---------------------------------------|------|-------------------| | | | | a
Interconnection cable (=main power supply) #### In case of preferential kWh rate power supply | ~ | Interconnection cable (= main power supply) | Wires: (3+GND)×1.5 mm² | |---|---|---| | | Normal kWh rate | Wires: 1N | | | power supply | Maximum running current: 6.3 A | | | Preferential kWh | Wires: 2×(0.75~1.25 mm²) | | | rate power supply contact | Maximum length: 50 m. | | | contact | Preferential kWh rate power supply contact: 16 V DC detection (voltage supplied by PCB). The voltage-free contact shall ensure the minimum applicable load of 15 V DC, 10 mA. | | | [9.8] Benefit kWh | power supply | Connect X11Y to X11YB. - a Interconnection cable (=main power supply) - b Normal kWh rate power supply - c Preferential power supply contact - 3 Fix the cables with cable ties to the cable tie mountings. #### INFORMATION In case of preferential kWh rate power supply, connect X11Y to X11YB. The necessity of separate normal kWh rate power supply to indoor unit (b) X2M/5+6 depends on the type of preferential kWh rate power supply. Separate connection to the indoor unit is required: - if preferential kWh rate power supply is interrupted when active, OR - if no power consumption of the indoor unit is allowed at the preferential kWh rate power supply when active. # 6.3.2 To connect the backup heater power supply | / | Backup heater type | Power supply | Wires | |----------|---------------------|-----------------|-------| | | *6V | 1N~ 230 V (6V3) | 2+GND | | | | 3~ 230 V (6T1) | 3+GND | | | *9W | 3N~ 400 V | 4+GND | | | [9.3] Backup heater | | | #### WARNING The backup heater MUST have a dedicated power supply and MUST be protected by the safety devices required by the applicable legislation. #### CAUTION If the indoor unit has a tank with a built-in electrical booster heater, use a dedicated power circuit for the backup heater and booster heater. NEVER use a power circuit shared by another appliance. This power circuit MUST be protected with the required safety devices according to the applicable legislation. #### CAUTION To guarantee the unit is completely earthed, ALWAYS connect the backup heater power supply and the earth cable. The backup heater capacity can vary, depending on the indoor unit model. Make sure that the power supply is in accordance with the backup heater capacity, as listed in the table below. | Backup
heater type | Backup
heater
capacity | Power supply | Maximum running current | Z _{max} | |-----------------------|------------------------------|--------------------------|-------------------------|------------------| | *6V | 2 kW | 1N~ 230 V ^(a) | 9 A | _ | | | 4 kW | 1N~ 230 V ^(a) | 17 A ^{(b)(c)} | 0.22 Ω | | | 6 kW | 1N~ 230 V ^(a) | 26 A ^{(b)(c)} | 0.22 Ω | | | 2 kW | 3~ 230 V ^(d) | 5 A | _ | | | 4 kW | 3~ 230 V ^(d) | 10 A | _ | | | 6 kW | 3~ 230 V ^(d) | 15 A | _ | | *9W | 3 kW | 3N~ 400 V | 4 A | _ | | | 6 kW | 3N~ 400 V | 9 A | _ | | | 9 kW | 3N~ 400 V | 13 A | _ | ⁽a) 6V3 - (b) Electrical equipment complying with EN/IEC 61000-3-12 (European/International Technical Standard setting the limits for harmonic currents produced by equipment connected to public low-voltage systems with input current >16 A and ≤75 A per phase). - (c) This equipment complies with EN/IEC 61000-3-11 (European/ International Technical Standard setting the limits for voltage changes, voltage fluctuations and flicker in public low-voltage supply systems for equipment with rated current ≤75 A) provided that the system impedance \boldsymbol{Z}_{sys} is less than or equal to \boldsymbol{Z}_{max} at the interface point between the user's supply and the public system. It is the responsibility of the installer or user of the equipment to ensure, by consultation with the distribution network operator if necessary, that the equipment is connected only to a supply with a system impedance $Z_{\mbox{\tiny sys}}$ less than or equal to $Z_{\mbox{\tiny max}}$ #### Connect the backup heater power supply as follows: - Factory-mounted cable connected to the contactor of the backup heater, inside the switch box (K5M) - Field wiring (see table below) F1B Overcurrent fuse (field supply). Recommended fuse: 4-pole; 20 A; curve 400 V; tripping class C. Safety contactor (in the switch box) Earth leakage circuit breaker (field supply) K5M Q1DI SWB Switch box X6M Terminal (field supply) #### NOTICE Do NOT cut or remove the backup heater power supply cable. #### 6.3.3 To connect the shut-off valve #### **INFORMATION** **Shut-off valve usage example.** In case of one LWT zone, and a combination of underfloor heating and heat pump convectors, install a shut-off valve before the underfloor heating to prevent condensation on the floor during cooling operation. For more information, see the installer reference guide. 1 Open the following (see "4.2.1 To open the indoor unit" [▶ 13]): | 1 | Front panel | 2 3 | |---|------------------|-----| | 2 | Switch box cover | | | 3 | Switch box | | 2 Connect the valve control cable to the appropriate terminals as shown in the illustration below. #### **NOTICE** Wiring is different for a NC (normally closed) valve and a NO (normally open) valve. 3 Fix the cable with cable ties to the cable tie mountings. # 6.3.4 To connect the electricity meters Wires: 2 (per meter)×0.75 mm² Electricity meters: 12 V DC pulse detection (voltage supplied by PCB) [9.A] Energy metering #### **INFORMATION** In case of an electricity meter with transistor output, check the polarity. The positive polarity MUST be connected to X5M/6 and X5M/4; the negative polarity to X5M/5 and X5M/3. 1 Open the following (see "4.2.1 To open the indoor unit" [▶ 13]): | 1 | Front panel | 2 3 | | | | |---|------------------|-----|--|--|--| | 2 | Switch box cover | | | | | | 3 | Switch box | | | | | 2 Connect the electricity meters cable to the appropriate terminals as shown in the illustration below. 3 Fix the cable with cable ties to the cable tie mountings. ## 6.3.5 To connect the domestic hot water pump Wires: (2+GND)×0.75 mm² DHW pump output. Maximum load: 2 A (inrush), 230 V AC, 1 A (continuous) 1 Open the following (see "4.2.1 To open the indoor unit" [▶ 13]): 2 Connect the domestic hot water pump cable to the appropriate terminals as shown in the illustration below. 3 Fix the cable with cable ties to the cable tie mountings. # 6.3.6 To connect the alarm output 1 Open the following (see "4.2.1 To open the indoor unit" [▶ 13]): **2** Connect the alarm output cable to the appropriate terminals as shown in the illustration below. a Installation of EKRP1HBAA is required. YC Y1 3 Fix the cable with cable ties to the cable tie mountings. # 6.3.7 To connect the space cooling/heating ON/ Reversible models Reversible models A4P Heating only models + conversion kit (EKHBCONV*) 1 Open the following (see "4.2.1 To open the indoor unit" [▶ 13]): | • | • | / | |---|------------------|-----| | 1 | Front panel | 2 3 | | 2 | Switch box cover | | | 3 | Switch box | | 2 Connect the space cooling/heating ON/OFF output cable to the appropriate terminals as shown in the illustration below. С - a Installation of EKRP1HBAA is required. - 3 Fix the cable with cable ties to the cable tie mountings. # 6.3.8 To connect the changeover to external heat source 1 Open the following (see "4.2.1 To open the indoor unit" [▶ 13]): 2 Connect the changeover to external heat source cable to the appropriate terminals as shown in the illustration below. - a Installation of EKRP1HBAA is required. - 3 Fix the cable with cable ties to the cable tie mountings. # 6.3.9 To connect the power consumption digital inputs 1 Open the following (see "4.2.1 To open the indoor unit" [▶ 13]): | • | • | / | |---|---|-----| | 1 | Front panel | 2 3 | | 2 | Switch box cover | | | 3 | Switch box | | **2** Connect the power consumption digital inputs cable to the appropriate terminals as shown in the illustration below. - Installation of EKRP1AHTA is required. - **3** Fix the cable with cable ties to the cable tie mountings. # 6.3.10 To connect the safety thermostat (normally closed contact) 1 Open the following (see "4.2.1 To open the indoor unit" [> 13]): | · | Front panel | 2 3 | |---|------------------|-----| | 2 | Switch box cover | | | ; | 3 Switch box | | 2 Connect the safety thermostat (normally closed) cable to the appropriate terminals as shown in the illustration below. **Note:** The jumper wire (factory-mounted) must be removed from the respective terminals. 3 Fix the cable with cable ties to the cable tie mountings. ## NOTICE Make sure to select and install the safety thermostat according to the applicable legislation. In any case, to prevent unnecessary tripping of the safety thermostat, we recommend the following: - The safety thermostat is automatically resettable. - The safety thermostat has a maximum temperature variation rate of 2°C/min. - There is a minimum distance of 2 m between the safety thermostat and the motorized 3-way valve delivered with the domestic hot water tank. # NOTICE **Error.** If you remove the jumper (open circuit) but do NOT connect the safety thermostat, stop error 8H-03 will occur. #### 6.3.11 To connect a Smart Grid This topic describes 2 possible ways to connect the indoor unit to a Smart Grid: - In case of low voltage Smart Grid contacts - In case of high voltage Smart Grid contacts. This requires the installation of the Smart Grid relay kit (EKRELSG). The 2 incoming Smart Grid contacts can activate the following Smart Grid modes: | Smart Grid contact | | Smart Grid operation mode | |--------------------|---|---------------------------| | 0 | 2 | | | 0 | 0 | Free running | #### 6 Electrical installation | Smart Grid contact | | Smart Grid operation mode |
--------------------|---|---------------------------| | 0 | 2 | | | 0 | 1 | Forced off | | 1 | 0 | Recommended on | | 1 | 1 | Forced on | The use of a Smart Grid pulse meter is not mandatory: | If Smart Grid pulse meter is | Then [9.8.8] Limit setting kW is | |--|----------------------------------| | Used | Not applicable | | ([9.A.2] Electricity meter $2 \neq None$) | | | Not used | Applicable | | ([9.A.2] Electricity meter 2 = None) | | #### In case of low voltage Smart Grid contacts The wiring of the Smart Grid in case of low voltage contacts is as follows: a Jumper (factory-mounted). If you also connect a safety thermostat (Q4L), replace the jumper with the safety thermostat wires. S4S Smart Grid pulse meter 1/S10S Low voltage Smart Grid contact 1 2/S11S Low voltage Smart Grid contact 2 1 Connect the wiring as follows: 2 Fix the cables with cable ties to the cable tie mountings. #### In case of high voltage Smart Grid contacts The wiring of the Smart Grid in case of high voltage contacts is as follows: STEP 1 Smart Grid relay kit installation STEP 2 Low voltage connections STEP 3 High voltage connections High voltage Smart Grid c High voltage Smart Grid contact 1High voltage Smart Grid contact 2 a, b Coil sides of relays c, d Contact sides of relays e Jumper (factory-mounted). If you also connect a safety thermostat (Q4L), replace the jumper with the safety thermostat wires. f Smart Grid pulse meter 1 Install the components of the Smart Grid relay kit as follows: K1A, K2A Relays X10M Termin Terminal block Screws for X10M **b** Screws for K1A and K2A c Sticker to put on the high voltage wires - d Wires between the relays and X5M (AWG22 ORG) - e Wires between the relays and X10M (AWG18 RED) 2 Connect the low voltage wiring as follows: S4S Smart Grid pulse meter 3 Connect the high voltage wiring as follows: High voltage Smart Grid contact 1High voltage Smart Grid contact 2 4 Fix the cables with cable ties to the cable tie mountings. If necessary, bundle excessive cable length with a cable tie. # 7 Configuration # INFORMATION Cooling is only applicable in case of: - Reversible models - Heating only models + conversion kit (EKHBCONV*) # 7.1 Overview: Configuration This chapter describes what you have to do and know to configure the system after it is installed. # NOTICE This chapter explains only the basic configuration. For more detailed explanation and background information, see the installer reference guide. #### Why If you do NOT configure the system correctly, it might NOT work as expected. The configuration influences the following: - The calculations of the software - What you can see on and do with the user interface #### How DAIKIN You can configure the system via the user interface. Installation manual # 7 Configuration - First time Configuration wizard. When you turn ON the user interface for the first time (via the unit), the configuration wizard starts to help you configure the system. - Restart the configuration wizard. If the system is already configured, you can restart the configuration wizard. To restart the configuration wizard, go to Installer settings > Configuration wizard. To access Installer settings, see "7.1.1 To access the most used commands" [> 28]. - Afterwards. If necessary, you can make changes to the configuration in the menu structure or the overview settings. #### **INFORMATION** When the configuration wizard is finished, the user interface will show an overview screen and request to confirm. When confirmed, the system will restart and the home screen will be displayed. #### Accessing settings - Legend for tables You can access the installer settings using two different methods. However, NOT all settings are accessible via both methods. If so, the corresponding table columns in this chapter are set to N/A (not applicable). | Method | Column in tables | |---|---------------------| | Accessing settings via the breadcrumb in the | # | | home menu screen or the menu structure. To enable breadcrumbs, press the ? button in the home screen. | For example: [2.9] | | Accessing settings via the code in the | Code | | overview field settings. | For example: [C-07] | #### See also: - "To access the installer settings" [▶ 28] - "7.5 Menu structure: Overview installer settings" [▶ 36] #### 7.1.1 To access the most used commands # To change the user permission level You can change the user permission level as follows: #### Installer pin code The Installer pin code is **5678**. Additional menu items and installer settings are now available. #### Advanced user pin code The Advanced user pin code is **1234**. Additional menu items for the user are now visible. #### User pin code The User pin code is 0000. #### To access the installer settings - 1 Set the user permission level to Installer. - **2** Go to [9]: Installer settings. #### To modify an overview setting Example: Modify [1-01] from 15 to 20. Most settings can be configured via the menu structure. If for any reason it is required to change a setting using the overview settings, then the overview settings can be accessed as follows: | | | | | | 1 | | |---|--|--------------------------------------|----------------------------|---|-----------------------------------|--------------| | 1 | Set the u change the | | | | Installer. See "To
el" [• 28]. | _ | | 2 | Go to [9.1
field so | - | | setting | gs > Overview | t ₩○ | | 3 | Turn the left dial to select the first part of the setting and confirm by pressing the dial. | | | (\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | 0
1
2
3 | 00
01
02
03
04 | 05
06
07
08
09 | OA
OB
OC
OD | | | | 4 | | | | | cond part of the | (○…○ | | |)1 | 00
01 15
02
03
04 | 05
06
07
08
09 | OA
OB
OC
OD
OE | | | | 5 | Turn the | right dia | ıl to mo | odify the | value from 15 to 20. | OO | | |)1 | 00
01 20
02
03
04 | 05
06
07
08
09 | OA
OB
OC
OD | | | | 6 | Press the | e left dia | I to co | nfirm the | new setting. | <i>U</i> *○ | | 7 | Press the screen. | center | button | to go ba | ack to the home | A | #### **INFORMATION** When you change the overview settings and you go back to the home screen, the user interface will show a popup screen and request to restart the system. When confirmed, the system will restart and recent changes will be applied. # 7.2 Configuration wizard After first power ON of the system, the user interface will guide you using the configuration wizard. This way you can set the most important initial settings. This way the unit will be able to run properly. Afterwards, more detailed settings can be done via the menu structure if required. #### **Protective functions** The unit is equipped with the following protective functions: - Room antifrost [2-06] - Tank disinfection [2-01] The unit automatically runs the protective functions when necessary. During installation or service, this behaviour is undesired. Therefore, the protective functions can be disabled. For more information, see the Installer reference guide, chapter Configuration. #### 7.2.1 Configuration wizard: Language | # | Code | Description | |-------|------|-------------| | [7.1] | N/A | Language | #### 7.2.2 Configuration wizard: Time and date | # | Code | Description | |-------|------|-----------------------------| | [7.2] | N/A | Set the local time and date | ## **INFORMATION** By default, daylight savings time is enabled and clock format is set to 24 hours. These settings can be changed during initial configuration or via the menu structure [7.2]: User settings > Time/date. # 7.2.3 Configuration wizard: System #### Indoor unit type The indoor unit type is displayed, but cannot be adjusted. #### Backup heater type The backup heater is adapted to be connected to most common European electricity grids. The type of backup heater can be viewed but not changed. | # | Code | Description | |---------|--------|-------------| | [9.3.1] | [E-03] | • 3: 6V | | | | ■ 4: 9W | #### Domestic hot water The following setting determines if the system can prepare domestic hot water or not, and which tank is used. Set this setting according to the actual installation. | # | Code | Description | |---------|-----------------------|---| | [9.2.1] | [E-05] ^(a) | ■ No DHW | | | [E-06] ^(a) | No tank installed. | | | [E-07] ^(a) | • EKHWS/E, small volume | | | | Tank with booster heater installed at the side of the tank, with a volume of 150 l or 180 l. | | | | ■ EKHWS/E, big volume | | | | Tank with booster heater installed at the side of the tank, with a volume of 200 I, 250 I or 300 I. | | | | ■ EKHWP/HYC | | | | Tank with optional booster heater installed at the top of the tank. | | | | • 3rd party, small coil | | | | Third-party tank with a coil size larger than 1.05 m². | | | | • 3rd party, big coil | | | | Third-party tank with a coil size larger than 1.80 m². | (a) Use the menu structure instead of the overview settings. Menu structure setting [9.2.1] replaces the following 3 overview settings: - [E-05]: Can the system prepare domestic hot water? - [E-06]: Is a domestic hot water tank installed in the system? - [E-07]: What kind of domestic hot water tank is installed? In case of EKHWP, we recommend to use the following settings: | # | Code | Item | EKHWP | |---------|--------|--------------------------|--------------| | [9.2.1] | [E-07] | Tank type | 5: EKHWP/HYC | | N/A | [4-05] | Thermistor type | 0: Automatic | | [5.8] | [6-0E] | Maximum tank temperature | ≤70°C | In case of EKHWS*D* / EKHWSU*D*, we recommend to
use the following settings: | # | Code | Item | EKHWS*D* / EKHWSU*D | | |---------|--------|--------------------------|-----------------------------|---------------------------| | | | | 150/180 | 200/250/300 | | [9.2.1] | [E-07] | Tank type | O: EKHWS/E,
small volume | 3: EKHWS/E,
big volume | | N/A | [4-05] | Thermistor type | 0: Automatic | 1: Type 1 | | [5.8] | [6-0E] | Maximum tank temperature | ≤60°C | ≤75°C | In case of a third-party tank, we recommend to use the following settings: | # | Code | Item | Third-party tank | | | |---------|--------|--------------------------|----------------------------|--------------------------|--| | | | | Coil≥1.05 m² | Coil≥1.8 m² | | | [9.2.1] | [E-07] | Tank type | 7:3rd party,
small coil | 8:3rd party,
big coil | | | N/A | [4-05] | Thermistor type | 0: Automatic | 1: Type 1 | | | [5.8] | [6-0E] | Maximum tank temperature | ≤60°C | ≤75°C | | ## **Emergency** When the heat pump fails to operate, the backup heater and/or booster heater can serve as an emergency heater. It then takes over the heat load either automatically or by manual interaction. When Emergency is set to Automatic and a heat pump failure occurs, the backup heater automatically takes over the heat load, and the booster heater in the optional tank takes over the domestic hot water production. # 7 Configuration When Emergency is set to Manual and a heat pump failure occurs, the domestic hot water heating and space heating stops. To manually recover it via the user interface, go to the Malfunctioning main menu screen and confirm whether the backup heater and/or booster heater can take over the heat load or not - Alternatively, when Emergency is set to: - auto SH reduced/DHW on, space heating is reduced but domestic hot water is still available. - auto SH reduced/DHW off, space heating is reduced and domestic hot water is NOT available. - auto SH normal/DHW off, space heating operates as normally but domestic hot water is NOT available. Similarly as in Manual mode, the unit can take the full load with the backup heater and/or booster heater if the user activates this via the Malfunctioning main menu screen. To keep energy consumption low, we recommend to set Emergency to auto SH reduced/DHW off if the house is unattended for longer periods. | # | Code | Description | |---------|--------|------------------------------| | [9.5.1] | [4-06] | • 0: Manual | | | | • 1: Automatic | | | | • 2: auto SH reduced/DHW on | | | | • 3: auto SH reduced/DHW off | | | | • 4: auto SH normal/DHW off | #### **INFORMATION** The auto emergency setting can be set in the menu structure of the user interface only. #### **INFORMATION** If [4-03]=1 or 3, then Emergency = Manual is not applicable for the booster heater. #### **INFORMATION** If a heat pump failure occurs and Emergency is not set to Automatic (setting 1), the room frost protection function and the underfloor heating screed dryout function will remain active even if the user does NOT confirm emergency operation. ## Number of zones The system can supply leaving water to up to 2 water temperature zones. During configuration, the number of water zones must be set. #### INFORMATION **Mixing station.** If your system layout contains 2 LWT zones, you need to install a mixing station in front of the main LWT zone. | # | Code | Description | |-------|--------|---| | [4.4] | [7-02] | • 0: Single zone | | | | Only one leaving water temperature zone: | | | | a a | | | | a Main LWT zone | | [4.4] | [7-02] | • 1: Dual zone | | | | Two leaving water temperature zones. The main leaving water temperature zone consists of the higher load heat emitters and a mixing station to achieve the desired leaving water temperature. In heating: | | | | a a B B B B | | | | c b | | | | a Additional LWT zone: Highest temperature | | | | b Main LWT zone: Lowest temperature | | | | c Mixing station | #### NOTICE NOT configuring the system in the following way can cause damage to the heat emitters. If there are 2 zones, it is important that in heating: - the zone with the lowest water temperature is configured as the main zone, and - the zone with the highest water temperature is configured as the additional zone. #### **NOTICE** If there are 2 zones and the emitter types are wrongly configured, water of high temperature can be sent towards a low temperature emitter (underfloor heating). To avoid this: - Install an aquastat/thermostatic valve to avoid too high temperatures towards a low temperature emitter. - Make sure you set the emitter types for the main zone [2.7] and for the additional zone [3.7] correctly in accordance with the connected emitter. #### NOTICE An overpressure bypass valve can be integrated in the system. Keep in mind that this valve might not be shown on the illustrations. #### **Booster heater capacity** The capacity of the booster heater must be set for the energy metering and/or power consumption control feature to work properly. When measuring the resistance value of the booster heater, you can set the exact heater capacity and this will lead to more accurate energy data. | # | Code | Description | |---------|------|---| | [9.4.1] | | Booster heater capacity [kW]. Only applies to domestic hot water tank with an internal booster heater. The capacity of the booster heater at nominal voltage. Range: 0~10 kW | ## 7.2.4 Configuration wizard: Backup heater The backup heater is adapted to be connected to most common European electricity grids. If the backup heater is available, the voltage, configuration and capacity must be set on the user interface. The capacities for the different steps of the backup heater must be set for the energy metering and/or power consumption control feature to work properly. When measuring the resistance value of each heater, you can set the exact heater capacity and this will lead to more accurate energy data. #### Backup heater type The backup heater is adapted to be connected to most common European electricity grids. The type of backup heater can be viewed but not changed. | # | Code | Description | |---------|--------|-------------| | [9.3.1] | [E-03] | • 3: 6V | | | | ■ 4:9W | #### Voltage - For a 6V model, this can be set to: - 230V, 1ph - 230V, 3ph - For a 9W model, this is fixed to 400V, 3ph. | # | Code | Description | |---------|--------|----------------| | [9.3.2] | [5-0D] | • 0: 230V, 1ph | | | | • 1: 230V, 3ph | | | | • 2: 400V, 3ph | #### Configuration The backup heater can be configured in different ways. It can be chosen to have a 1-step only backup heater or a backup heater with 2 steps. If 2 steps, the capacity of the second step depends on this setting. It can also be chosen to have a higher capacity of the second step in emergency. | # | Code | Description | |---------|--------|--| | [9.3.3] | [4-0A] | • 0: Relay 1 | | | | • 1: Relay 1 / Relay 1+2 | | | | • 2: Relay 1 / Relay 2 | | | | 3: Relay 1 / Relay 2 Emergency Relay
1+2 | #### **INFORMATION** Settings [9.3.3] and [9.3.5] are linked. Changing one setting influences the other. If you change one, check if the other is still as expected. #### INFORMATION During normal operation, the capacity of the second step of the backup heater at nominal voltage is equal to [6-03]+[6-04]. #### **INFORMATION** If [4-0A]=3 and emergency mode is active, the power usage of the backup heater is maximal and equal to $2\times[6-03]+[6-04]$. #### Capacity step 1 | # | Code | Description | |---------|--------|---| | [9.3.4] | [6-03] | - The capacity of the first step of the | | | | backup heater at nominal voltage. | #### Additional capacity step 2 | # | Code | Description | |---------|--------|--| | [9.3.5] | [6-04] | The capacity difference between the
second and first step of the backup
heater at nominal voltage. Nominal
value depends on backup heater
configuration. | ## 7.2.5 Configuration wizard: Main zone The most important settings for the main leaving water zone can be set here. #### **Emitter type** Heating up or cooling down the main zone can take longer. This depends on: - The water volume of the system - · The heater emitter type of the main zone The setting Emitter type can compensate for a slow or a quick heating/cooling system during the heat up/cool down cycle. In room thermostat control, Emitter type influences the maximum modulation of the desired leaving water temperature, and the possibility for usage of the automatic cooling/heating changeover based on the indoor ambient temperature. It is important to set Emitter type correctly and in accordance with your system layout. The target delta T for the main zone depends on it. | | # | Code | Description | |-------|---|--------|-----------------------| | [2.7] | | [2-0C] | O: Underfloor heating | | | | | • 1: Fancoil unit | | | | | • 2: Radiator | The setting of the emitter type has an influence on the space heating setpoint range and the target delta T in heating as follows: | Description | Space heating setpoint range | Target delta T in heating | |--------------------------|------------------------------|---------------------------| | O: Underfloor
heating | Maximum 55°C | Variable | | 1: Fancoil unit | Maximum 55°C | Variable | | 2: Radiator | Maximum 60°C | Fixed 8°C | #### NOTICE Average emitter temperature =
Leaving water temperature – (Delta T)/2 This means that for a same leaving water temperature setpoint, the average emitter temperature of radiators is lower than that of underfloor heating because of a bigger delta T Example radiators: 40-8/2=36°C Example underfloor heating: 40-5/2=37.5°C To compensate, you can: - Increase the weather-dependent curve desired temperatures [2.5]. - Enable leaving water temperature modulation and increase the maximum modulation [2.C]. #### Control Define how the operation of the unit is controlled. | Control | In this control | |-----------------------------|---| | Leaving water | Unit operation is decided based on the leaving water temperature regardless the actual room temperature and/or heating or cooling demand of the room. | | External room
thermostat | Unit operation is decided by the external thermostat or equivalent (e.g. heat pump convector). | | Room thermostat | Unit operation is decided based on the ambient temperature of the dedicated Human Comfort Interface (BRC1HHDA used as room thermostat). | | # | Code | Description | |-------|--------|-------------------------------| | [2.9] | [C-07] | • 0: Leaving water | | | | • 1: External room thermostat | | | | • 2: Room thermostat | #### Setpoint mode Define the setpoint mode: - Fixed: the desired leaving water temperature does not depend on the outdoor ambient temperature. - In WD heating, fixed cooling mode, the desired leaving water temperature: - depends on the outdoor ambient temperature for heating - does NOT depend on the outdoor ambient temperature for cooling - In Weather dependent mode, the desired leaving water temperature depends on the outdoor ambient temperature. | | • | • | |-------|------|-----------------------------| | # | Code | Description | | [2.4] | N/A | Setpoint mode: | | | | • Fixed | | | | • WD heating, fixed cooling | | | | • Weather dependent | When weather dependent operation is active, low outdoor temperatures will result in warmer water and vice versa. During weather dependent operation, the user can shift the water temperature up or down by a maximum of 10°C. #### Schedule Indicates if the desired leaving water temperature is according to a schedule. Influence of the LWT setpoint mode [2.4] is as follows: In Fixed LWT setpoint mode, the scheduled actions consist of desired leaving water temperatures, either preset or custom. In Weather dependent LWT setpoint mode, the scheduled actions consist of desired shift actions, either preset or custom. | # | Code | Description | |-------|------|-------------| | [2.1] | N/A | • 0: No | | | | • 1: Yes | #### 7.2.6 Configuration wizard: Additional zone The most important settings for the additional leaving water zone can be set here. #### **Emitter type** For more info about this functionality, see "7.2.5 Configuration wizard: Main zone" [> 31]. | # | Code | Description | |-------|--------|-------------------------| | [3.7] | [2-0D] | • 0: Underfloor heating | | | | • 1: Fancoil unit | | | | • 2: Radiator | #### Control The control type is displayed here, but cannot be adjusted. It is determined by the control type of the main zone. For more info about the functionality, see "7.2.5 Configuration wizard: Main zone" [> 31]. | # | Code | Description | |-------|------|--| | [3.9] | N/A | O: Leaving water if the control type of the main zone is Leaving water. | | | | • 1: External room thermostat if the control type of the main zone is External room thermostat or Room thermostat. | #### Setpoint mode For more info about this functionality, see "7.2.5 Configuration wizard: Main zone" [> 31]. | # | Code | Description | |-------|------|-------------------------------| | [3.4] | N/A | • 0: Fixed | | | | • 1:WD heating, fixed cooling | | | | • 2: Weather dependent | If you choose WD heating, fixed cooling or Weather dependent, the next screen will be the detailed screen with weather-dependent curves. Also see "7.3 Weather-dependent curve" [> 33]. #### Schedule Indicates if the desired leaving water temperature is according to a schedule. Also see "7.2.5 Configuration wizard: Main zone" [• 31]. | # | Code | Description | |-------|------|-------------| | [3.1] | N/A | • 0: No | | | | • 1: Yes | #### 7.2.7 Configuration wizard: Tank This part only applies to systems with an optional domestic hot water tank installed. #### Heat up mode The domestic hot water can be prepared in 3 different ways. They differ from each other by the way the desired tank temperature is set and how the unit acts upon it. | # | Code | Description | |-------|--------|--| | [5.6] | [6-0D] | Heat up mode: | | | | 0: Reheat only: Only reheat operation is allowed. | | | | 1: Schedule + reheat: The domestic
hot water tank is heated according to a
schedule and between the scheduled
heat up cycles, reheat operation is
allowed. | | | | 2: Schedule only: The domestic hot
water tank can ONLY be heated
according to a schedule. | See the operation manual for more details. #### **INFORMATION** Risk of space heating capacity shortage for domestic hot water tank without internal booster heater: In case of frequent domestic hot water operation, frequent and long space heating/cooling interruption will happen when selecting the following: Tank > Heat up mode > Reheat only. #### **Comfort setpoint** Only applicable when domestic hot water preparation is Schedule only or Schedule + reheat. When programming the schedule, you can make use of the comfort setpoint as a preset value. When you later want to change the storage setpoint, you only have to do it in one place. The tank will heat up until the **storage comfort temperature** has been reached. It is the higher desired temperature when a storage comfort action is scheduled. Additionally, a storage stop can be programmed. This feature puts a stop to tank heating even if the setpoint has NOT been reached. Only program a storage stop when tank heating is absolutely undesirable. | # | Code | Description | |-------|--------|-------------------| | [5.2] | [6-0A] | Comfort setpoint: | | | | • 30°C~[6-0E]°C | #### Eco setpoint The storage economic temperature denotes the lower desired tank temperature. It is the desired temperature when a storage economic action is scheduled (preferably during day). | # | Code | Description | |-------|--------|-------------------------| | [5.3] | [6-0B] | Eco setpoint: | | | | • 30°C~min(50,[6-0E])°C | #### Reheat setpoint #### Desired reheat tank temperature, used: - in Schedule + reheat mode, during reheat mode: the guaranteed minimum tank temperature is set by the Reheat setpoint minus the reheat hysteresis. If the tank temperature drops below this value, the tank is heated up. - during storage comfort, to prioritize the domestic hot water preparation. When the tank temperature rises above this value, domestic hot water preparation and space heating/cooling are executed sequentially. | # | Code | Description | |-------|--------|-------------------------| | [5.4] | [6-0C] | Reheat setpoint: | | | | • 30°C~min(50,[6-0E])°C | # 7.3 Weather-dependent curve ### 7.3.1 What is a weather-dependent curve? #### Weather-dependent operation The unit operates 'weather dependent' if the desired leaving water or tank temperature is determined automatically by the outdoor temperature. It therefore is connected to a temperature sensor on the North wall of the building. If the outdoor temperature drops or rises, the unit compensates instantly. Thus, the unit does not have to wait for feedback by the thermostat to increase or decrease the temperature of the leaving water or tank. Because it reacts more quickly, it prevents high rises and drops of the indoor temperature and water temperature at tap points. #### Advantage Weather-dependent operation reduces energy consumption. #### Weather-dependent curve To be able to compensate for differences in temperature, the unit relies on its weather-dependent curve. This curve defines how much the temperature of the tank or leaving water must be at different outdoor temperatures. Because the slope of the curve depends on local circumstances such as climate and the insulation of the house, the curve can be adjusted by an installer or user. #### Types of weather-dependent curve There are 2 types of weather-dependent curves: - 2-points curve - Slope-offset curve Which type of curve you use to make adjustments, depends on your personal preference. See "7.3.4 Using weather-dependent curves" [> 34]. #### Availability The weather-dependent curve is available for: - Main zone Heating - Main zone Cooling - Additional zone Heating - Additional zone Cooling - Tank (only available to installers) #### INFORMATION To operate weather dependent, correctly configure the setpoint of the main zone, additional zone or tank. See "7.3.4 Using weather-dependent curves" [> 34]. #### 7.3.2 2-points curve Define the weather-dependent curve with these two setpoints: - Setpoint (X1, Y2) - Setpoint (X2, Y1) ## Example # 7 Configuration | Item | Description | |--------|--| | а | Selected weather dependent zone: | | | Main zone or additional zone heating | | | | | | ■ ☐:::: Domestic hot water | | X1, X2 | Examples of outdoor ambient temperature | | Y1, Y2 | Examples of desired tank temperature or leaving water temperature. The icon corresponds to the heat emitter for that zone: | | | Underfloor heating | | |
■ | | | Radiator | | | Domestic hot water tank | | Possible actions on this screen | | | |---------------------------------|------------------------------|--| | (0····) | Go through the temperatures. | | | ○…○1 | Change the temperature. | | | ○@ ^µ | Go to the next temperature. | | | <i>&</i> #○ | Confirm changes and proceed. | | #### 7.3.3 Slope-offset curve #### Slope and offset Define the weather-dependent curve by its slope and offset: - Change the slope to differently increase or decrease the temperature of the leaving water for different ambient temperatures. For example, if leaving water temperature is in general fine but at low ambient temperatures too cold, raise the slope so that leaving water temperature is heated increasingly more at decreasingly lower ambient temperatures. - Change the offset to equally increase or decrease the temperature of the leaving water for different ambient temperatures. For example, if leaving water temperature is always a bit too cold at different ambient temperatures, shift the offset up to equally increase the leaving water temperature for all ambient temperatures. # Examples Weather-dependent curve when slope is selected: Weather-dependent curve when offset is selected: | Item | Description | | | |-------------------|--|--|--| | а | WD curve before changes. | | | | b | WD curve after changes (as example): | | | | | When slope is changed, the new preferred
temperature at X1 is unequally higher than the
preferred temperature at X2. | | | | | When offset is changed, the new preferred
temperature at X1 is equally higher as the preferred
temperature at X2. | | | | С | Slope | | | | d | Offset | | | | е | Selected weather dependent zone: | | | | | Main zone or additional zone heating | | | | | l . | | | | | Wain zone or additional zone cooling | | | | | ■ Tiii: Domestic hot water | | | | X1, X2 | Examples of outdoor ambient temperature | | | | Y1, Y2,
Y3, Y4 | Examples of desired tank temperature or leaving water temperature. The icon corresponds to the heat emitter for that zone: | | | | | Underfloor heating | | | | | • 🗏: Fan coil unit | | | | | ■ : Radiator | | | | | Domestic hot water tank | | | | Possible actions on this screen | | | |---------------------------------|---|--| | €○ | Select slope or offset. | | | ○…○ℷ | Increase or decrease the slope/offset. | | | ○@m | When slope is selected: set slope and go to offset. | | | | When offset is selected: set offset. | | | <i>©</i> #○ | Confirm changes and return to the submenu. | | ## 7.3.4 Using weather-dependent curves Configure weather-dependent curves as following: #### To define the setpoint mode To use the weather-dependent curve, you need to define the correct setpoint mode: | Go to setpoint mode | Set the setpoint mode to | | |---------------------------------|--|--| | Main zone – Heating | | | | [2.4] Main zone > Setpoint mode | WD heating, fixed cooling OR Weather dependent | | | Main zone - Cooling | | | | [2.4] Main zone > Setpoint mode | Weather dependent | | | Additional zone – Heating | | | | Go to setpoint mode | Set the setpoint mode to | |---------------------------------------|---| | [3.4] Additional zone > Setpoint mode | WD heating, fixed cooling OR Weather dependent | | Additional zone – Cooling | | | [3.4] Additional zone > Setpoint mode | Weather dependent | | Tank | | | [5.B] Tank > Setpoint mode | Restriction: Only available to installers. | | | Weather dependent | #### To change the type of weather-dependent curve To change the type for all zones (main + additional) and for the tank, go to [2.E] Main zone > WD curve type. Viewing which type is selected is also possible via: - [3.C] Additional zone > WD curve type - [5.E] Tank > WD curve type Restriction: Only available to installers. #### To change the weather-dependent curve | Zone | Go to | |---------------------------|--| | Main zone – Heating | [2.5] Main zone > Heating WD curve | | Main zone – Cooling | [2.6] Main zone > Cooling WD curve | | Additional zone – Heating | [3.5] Additional zone > Heating WD curve | | Additional zone – Cooling | [3.6] Additional zone > Cooling WD curve | | Tank | Restriction: Only available to installers. | | | [5.C] Tank > WD curve | #### **INFORMATION** # Maximum and minimum setpoints You cannot configure the curve with temperatures that are higher or lower than the set maximum and minimum setpoints for that zone or for the tank. When the maximum or minimum setpoint is reached, the curve flattens out. #### To fine-tune the weather-dependent curve: slope-offset curve The following table describes how to fine-tune the weather-dependent curve of a zone or tank: | You fo | Fine-tune with slope and offset: | | | |---------------------------------|----------------------------------|----------|----------| | At regular outdoor temperatures | At cold outdoor temperatures | Slope | Offset | | OK | Cold | 1 | _ | | OK | Hot | \ | _ | | Cold | OK | \ | 1 | | Cold | Cold | _ | 1 | | Cold | Hot | \ | 1 | | Hot | OK | 1 | \ | | Hot | Cold | 1 | 1 | | Hot | Hot | _ | | # To fine-tune the weather-dependent curve: 2-points curve The following table describes how to fine-tune the weather-dependent curve of a zone or tank: | You feel | | | Fine-tune with setpoints: | | | | |--|------|-------------------|---------------------------|-------------------|-------------------|--| | At regular outdoor temperatures At cold outdoor temperatures | | Y2 ^(a) | Y1 ^(a) | X1 ^(a) | X2 ^(a) | | | OK | Cold | 1 | _ | 1 | _ | | | OK | Hot | ↓ | _ | ↓ | _ | | | Cold | OK | _ | 1 | _ | 1 | | | Cold | Cold | 1 | 1 | 1 | 1 | | | Cold | Hot | ↓ | 1 | ↓ | 1 | | | Hot | OK | _ | | _ | 1 | | | Hot | Cold | 1 | 1 | 1 | | | | Hot | Hot | 1 | 1 | 1 | 1 | | ⁽a) See "7.3.2 2-points curve" [▶ 33]. # 7.4 Settings menu You can set additional settings using the main menu screen and its submenus. The most important settings are presented here. #### 7.4.1 Main zone #### Thermostat type Only applicable in external room thermostat control. #### **NOTICE** If an external room thermostat is used, the external room thermostat will control the room frost protection. However, the room frost protection is only possible if [C.2] Space heating/cooling=On. | # | Code | Description | |-------|--------|--| | [2.A] | [C-05] | External room thermostat type for the main zone: | | | | 1: 1 contact: The used external roo
thermostat can only send a thern
ON/OFF condition. There is a
separation between heating or coolin
demand. | | | | 2: 2 contacts: The used external
room thermostat can send a separate
heating/cooling thermo ON/OFF
condition. | #### 7.4.2 Additional zone #### Thermostat type Only applicable in external room thermostat control. For more info about the functionality, see "7.4.1 Main zone" [> 35]. | # | Code | Description | | |-------|---|-----------------|--| | [3.A] | [C–06] External room thermostat type for the additional zone: | | | | | | • 1:1 contact | | | | | • 2: 2 contacts | | #### 7.4.3 Information #### **Dealer information** The installer can fill in his contact number here. | # | Code | Description | |-------|------|---------------------------------------| | [8.3] | N/A | Number that users can call in case of | | | | problems. | # 7.5 Menu structure: Overview installer settings (*) Only applicable in Swedish language. #### **INFORMATION** Solar kit settings are shown but are NOT applicable for this unit. Settings shall NOT be used or changed. #### **INFORMATION** Depending on the selected installer settings and unit type, settings will be visible/invisible. # 8 Commissioning #### NOTICE **General commissioning checklist.** Next to the commissioning instructions in this chapter, a general commissioning checklist is also available on the Daikin Business Portal (authentication required). The general commissioning checklist is complementary to the instructions in this chapter and can be used as a guideline and reporting template during the commissioning and hand-over to the user. #### **NOTICE** ALWAYS operate the unit with thermistors and/or pressure sensors/switches. If NOT, burning of the compressor might be the result. #### **NOTICE** Make sure both air purge valves (one on the magnetic filter and one on the backup heater) are open. All automatic air purge valves MUST remain open after commissioning. #### **NOTICE** **Pump.** To prevent blocking of the pump rotor, commission the unit as quickly as possible after filling the water circuit. #### **INFORMATION** **Protective functions – "Installer-on-site mode"**. The software is equipped with protective functions, such as room antifrost. The unit automatically runs these functions when necessary. During installation or service this behaviour is undesired. Therefore, the protective functions can be disabled: - At first power-on: The protective functions are disabled by default. After 12 hours they will be automatically enabled. - Afterwards: An installer can manually disable the protective functions by setting [9.G]: Disable protections=Yes. After his work is done, he can enable the protective functions by setting [9.G]: Disable
protections=No. Also see "Protective functions" [▶ 29]. # 8.1 Checklist before commissioning After the installation of the unit, first check the items listed below. Once all checks are fulfilled, the unit MUST be closed. Power-up the unit after it is closed. | described in the installer reference guide . | |---| | The indoor unit is properly mounted. | | The outdoor unit is properly mounted. | | | The following field wiring has been carried out according to this document and the applicable legislation: | |--|--| | | Between the local supply panel and the outdoor unit | | | Between indoor unit and outdoor unit | | | Between the local supply panel and the indoor unit | | | Between the indoor unit and the valves (if applicable) | | | Between the indoor unit and the room thermostat (if applicable) | | | Between the indoor unit and the domestic hot water tank (if applicable) | | | The system is properly earthed and the earth terminals are tightened. | | | The fuses or locally installed protection devices are installed according to this document, and have NOT been bypassed. | | | The power supply voltage matches the voltage on the identification label of the unit. | | | There are NO loose connections or damaged electrical components in the switch box. | | | There are NO damaged components or squeezed pipes on the inside of the indoor and outdoor units. | | | Backup heater circuit breaker F1B (field supply) is turned ON. | | | Only for tanks with built-in booster heater: | | | Booster heater circuit breaker F2B (field supply) is turned ON. | | | There are NO refrigerant leaks. | | | The refrigerant pipes (gas and liquid) are thermally insulated. | | | The correct pipe size is installed and the pipes are properly insulated. | | | There is NO water leak inside the indoor unit. | | | The shut-off valves are properly installed and fully open. | | | The stop valves (gas and liquid) on the outdoor unit are fully open. | | | The air purge valve is open (at least 2 turns). | | | The pressure relief valve purges water when opened. Clean water MUST come out. | | | The minimum water volume is guaranteed in all conditions. See "To check the water volume and flow rate" in "5.3 Preparing water piping" [> 16]. | # 8.2 Checklist during commissioning completely. (if applicable) The domestic hot water tank is filled | | The minimum flow rate during backup heater/defrost operation is guaranteed in all conditions. See "To check the water volume and flow rate" in "5.3 Preparing water piping" [> 16]. | |--|--| | | To perform an air purge . | | | To perform a test run . | | | To perform an actuator test run . | # 8 Commissioning | | Underfloor screed dryout function | | | | | | | | |--|-----------------------------------|------------|--------|--------|----------|----|---------|-----| | | The | underfloor | screed | dryout | function | is | started | (if | | | nece | ssary). | | | | | | | #### 8.2.1 To check the minimum flow rate | 1 | Check the hydraulic configuration to find out which space heating loops can be closed by mechanical, electronic, or other valves. | _ | |---|---|---| | 2 | Close all space heating loops that can be closed. | _ | | 3 | Start the pump test run (see "8.2.4 To perform an actuator test run" [> 38]). | _ | | 4 | Read out the flow rate ^(a) and modify the bypass valve setting to reach the minimum required flow rate + 2 l/ min. | _ | ⁽a) During pump test run, the unit can operate below the minimum required flow rate. | If operation is | Then the minimum required flow rate is | |-------------------------------|--| | Cooling | 16 l/min | | Heating/defrost | 22 l/min | | Domestic hot water production | | # 8.2.2 To perform an air purge **Conditions:** Make sure all operation is disabled. Go to [C]: Operation and turn off Space heating/cooling and Tank operation. | 1 | Set the user permission level to Installer. See "To change the user permission level" [• 28]. | _ | | | | |---|---|-------------|--|--|--| | 2 | Go to [A.3]: Commissioning > Air purge. | 1 €○ | | | | | 3 | Select 0K to confirm. | 1 €○ | | | | | | Result: The air purge starts. It stops automatically when air purge cycle is finished. | | | | | | | To stop the air purge manually: | _ | | | | | | 1 Go to Stop air purge. | 1 €○ | | | | | | 2 Select 0K to confirm. | ™ ○ | | | | #### Air purging heat emitters or collectors We recommend to purge air with the unit's air purge function (see above). However, if you purge air from the heat emitters or collectors, mind the following: #### WARNING Air purging heat emitters or collectors. Before you purge air from heat emitters or collectors, check if \bigcirc or \bigcirc is displayed on the home screen of the user interface. - If not, you can purge air immediately. - If yes, make sure that the room where you want to purge air is sufficiently ventilated. Reason: Refrigerant might leak into the water circuit, and subsequently into the room when you purge air from the heat emitters or collectors. # 8.2.3 To perform an operation test run **Conditions:** Make sure all operation is disabled. Go to [C]: Operation and turn off Space heating/cooling and Tank operation. | l . | Set the user permission level to Installer. See "To | _ | |-----|---|-------------| | | change the user permission level" [▶ 28]. | | | 2 | Go to [A.1]: Commissioning > Operation test | 1 €○ | | | run. | | | 3 | Se | lect a test from the list. Example: Heating. | 1 00%···○ | |---|----------|---|------------------| | 4 | Se | 1 0%○ | | | | Re
wh | | | | | То | _ | | | | 1 | (@*○ | | | | 2 | Select 0K to confirm. | (0○ | #### **INFORMATION** If the outdoor temperature is outside the range of operation, the unit may NOT operate or may NOT deliver the required capacity. #### To monitor leaving water and tank temperatures During test run, the correct operation of the unit can be checked by monitoring its leaving water temperature (heating/cooling mode) and tank temperature (domestic hot water mode). To monitor the temperatures: | 1 | In the menu, go to Sensors. | : ₩○ | |---|-------------------------------------|-------------| | 2 | Select the temperature information. | 1 €○ | # 8.2.4 To perform an actuator test run **Conditions:** Make sure all operation is disabled. Go to [C]: Operation and turn off Space heating/cooling and Tank operation. #### **Purpose** Perform an actuator test run to confirm the operation of the different actuators. For example, when you select Pump, a test run of the pump will start. | 1 | Set the user permission level to Installer. See "To change the user permission level" [▶ 28]. | _ | | | | |---|---|-------------|--|--|--| | 2 | Go to [A.2]: Commissioning > Actuator test run. | 1 €○ | | | | | 3 | Select a test from the list. Example: Pump. | 1 €○ | | | | | 4 | Select 0K to confirm. | 1 €○ | | | | | | Result: The actuator test run starts. It stops automatically when ready (±30 min). | | | | | | | To stop the test run manually: | | | | | | | 1 In the menu, go to Stop test run. | 1 €○ | | | | | | 2 Select 0K to confirm. | 1 €○ | | | | ## Possible actuator test runs - Booster heater test - Backup heater 1 test - Backup heater 2 test - Pump test #### INFORMATION Make sure that all air is purged before executing the test run. Also avoid disturbances in the water circuit during the test run. - Shut off valve test - Diverter valve test (3-way valve for switching between space heating and tank heating) - Bivalent signal test - Alarm output test - C/H signal test - DHW pump test - Bizone kit direct pump test (bizone kit EKMIKPOA or EKMIKPHA) - Bizone kit mixed pump test (bizone kit EKMIKPOA or EKMIKPHA) - Bizone kit mixing valve test (bizone kit EKMIKPOA or EKMIKPHA) # 8.2.5 To perform an underfloor heating screed dryout **Conditions:** Make sure all operation is disabled. Go to [C]: Operation and turn off Space heating/cooling and Tank operation. | 1 | Set the user permission level to Installer. See "To change the user permission level" [> 28]. | _ | | | |---|---|-------------------|--|--| | 2 | Go to [A.4]: Commissioning > UFH screed dryout. | | | | | 3 | Set a dryout program: go to Program and use the UFH screed dryout programming screen. | | | | | 4 | Select 0K to confirm. | ○… <i>&</i> ⊁ | | | | | Result: The underfloor heating screed dryout starts. It stops automatically when done. | | | | | | To stop the test run manually: | | | | | | 1 Go to Stop UFH screed dryout. | (€○ | | | | | 2 Select 0K to confirm. | (0○ | | | #### NOTICE To perform an underfloor heating screed dryout, room frost protection needs to be disabled ([2-06]=0). By default, it is enabled ([2-06]=1). However, due to the "installer-on-site" mode (see "Commissioning"), room frost protection will be automatically disabled for 12 hours after the first power-on. If the
screed dryout still needs to be performed after the first 12 hours of power-on, manually disable room frost protection by setting [2-06] to "0", and KEEP it disabled until the screed dryout has finished. Ignoring this notice will result in cracking of the screed. #### NOTICE For the underfloor heating screed dryout to be able to start, make sure the following settings are met: - **•** [4-00]=1 - [C-02]=0 - [D-01]=0 - **•** [4-08]=0 - **•** [4-01]≠1 # 9 Hand-over to the user Once the test run is finished and the unit operates properly, please make sure the following is clear for the user: - Fill in the installer setting table (in the operation manual) with the actual settings. - Make sure that the user has the printed documentation and ask him/her to keep it for future reference. Inform the user that he can find the complete documentation at the URL mentioned earlier in this manual. - Explain the user how to properly operate the system and what to do in case of problems. - · Show the user what to do for the maintenance of the unit. - Explain the user about energy saving tips as described in the operation manual. #### 10 **Technical data** A subset of the latest technical data is available on the regional Daikin website (publicly accessible). The full set of latest technical data is available on the Daikin Business Portal (authentication required). #### 10.1 Piping diagram: Indoor unit - Water side - A B C Refrigerant side Field installed - a1 - Space heating/cooling Water IN (screw connection, 1") Space heating/cooling Water OUT (screw connection, 1") Gas refrigerant IN (heating mode; condenser) - Liquid refrigerant OUT (heating mode; condenser) - Liquid refrigerant IN (cooling mode; evaporator) Gas refrigerant OUT (cooling mode; evaporator) Plate heat exchanger Shut-off valve for service - Expansion vessel - Magnetic filter/dirt separator - Safety valve Automatic air purge - Drain valve Backup heater - Pump B1PW Space heating water pressure sensor B₂L Flow sensor #### Thermistors: - Heat exchanger Water OUT Backup heater Water OUT R1T - R2T - R3T Liquid refrigerant - R4T Heat exchanger – Water IN #### Connections: Brazed connection # 10.2 Wiring diagram: Indoor unit See the internal wiring diagram supplied with the unit (on the inside of the indoor unit switch box cover). The abbreviations used are listed below. #### Notes to go through before starting the unit | English | Translation | |---|--| | Notes to go through before | Notes to go through before | | starting the unit | starting the unit | | X1M | Main terminal | | X2M | Field wiring terminal for AC | | X5M | Field wiring terminal for DC | | X6M | Backup heater power supply terminal | | X7M, X8M | Booster heater power supply terminal | | X10M | Smart Grid terminal | | | Earth wiring | | | Field supply | | 1 | Several wiring possibilities | | | Option | | [| Not mounted in switch box | | | Wiring depending on model | | <u> </u> | PCB | | | 1 | | Note 1: Connection point of the power supply for the BUH/BSH | Note 1: Connection point of the power supply for the backup | | should be foreseen outside the | heater/booster heater should be | | unit. | foreseen outside the unit. | | Backup heater power supply | Backup heater power supply | | □ 6T1 (3~, 230 V, 6 kW) | □ 6T1 (3~, 230 V, 6 kW) | | □ 6V3 (1N~, 230 V, 6 kW) | □ 6V3 (1N~, 230 V, 6 kW) | | □ 6WN/9WN (3N~, 400 V, 6/9 | □ 6WN/9WN (3N~, 400 V, 6/9 | | | | | kW) | kW) | | kW) User installed options | kW) User installed options | | kW) User installed options Domestic hot water tank | kW) User installed options □ Domestic hot water tank | | kW) User installed options | kW) User installed options | | kW) User installed options □ Domestic hot water tank | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as | | kW) User installed options Domestic hot water tank Remote user interface | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main LWT | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main leaving water temperature ON/OFF thermostat (wired) | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main LWT On/OFF thermostat (wired) | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main leaving water temperature ON/OFF thermostat (wired) | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main LWT On/OFF thermostat (wired) On/OFF thermostat (wireless) | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O
PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main leaving water temperature ON/OFF thermostat (wired) ON/OFF thermostat (wireless) | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main LWT On/OFF thermostat (wired) Cn/OFF thermostat (wireless) Ext. thermistor | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor Digital I/O PCB Demand PCB Safety thermostat WLAN module WLAN cartridge Bizone mixing kit Main leaving water temperature ON/OFF thermostat (wired) ON/OFF thermostat (wireless) External thermistor | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main LWT On/OFF thermostat (wired) On/OFF thermostat (wireless) Ext. thermistor Heat pump convector Add LWT | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main leaving water temperature ON/OFF thermostat (wired) ON/OFF thermostat (wireless) External thermistor Heat pump convector Additional leaving water temperature | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main LWT On/OFF thermostat (wired) Con/OFF thermostat (wireless) Ext. thermistor Heat pump convector Add LWT | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main leaving water temperature ON/OFF thermostat (wired) ON/OFF thermostat (wireless) External thermistor Heat pump convector Additional leaving water temperature ON/OFF thermostat (wired) | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main LWT On/OFF thermostat (wired) On/OFF thermostat (wireless) Ext. thermistor Heat pump convector Add LWT On/OFF thermostat (wired) On/OFF thermostat (wired) | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main leaving water temperature ON/OFF thermostat (wired) CN/OFF thermostat (wireless) External thermistor Heat pump convector Additional leaving water temperature ON/OFF thermostat (wired) ON/OFF thermostat (wired) | | kW) User installed options Domestic hot water tank Remote user interface Ext. indoor thermistor Ext outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main LWT On/OFF thermostat (wired) Con/OFF thermostat (wireless) Ext. thermistor Heat pump convector Add LWT | kW) User installed options Domestic hot water tank Dedicated Human Comfort Interface (BRC1HHDA used as room thermostat) External indoor thermistor External outdoor thermistor Digital I/O PCB Demand PCB Safety thermostat Smart Grid WLAN module WLAN cartridge Bizone mixing kit Main leaving water temperature ON/OFF thermostat (wired) External thermistor Heat pump convector Additional leaving water temperature ON/OFF thermostat (wired) | #### Position in switch box | English | Translation | |------------------------|------------------------| | Position in switch box | Position in switch box | # Legend | Legena | | | |----------------|---|---| | A1P | | Main PCB | | A2P | * | ON/OFF thermostat (PC=power circuit) | | A3P | * | Heat pump convector | | A4P | * | Digital I/O PCB | | A8P | * | Demand PCB | | A11P | | Main PCB of the MMI (= user interface of the indoor unit) | | A14P | * | PCB of the dedicated Human Comfort
Interface (BRC1HHDA used as room
thermostat) | | A15P | * | Receiver PCB (wireless ON/OFF thermostat) | | A20P | * | WLAN module | | A30P | * | Bizone mixing kit PCB | | BSK (A3P) | | Solar pump station relay | | CN* (A4P) | * | Connector | | DS1(A8P) | * | DIP switch | | F1B | # | Overcurrent fuse backup heater | | F2B | # | Overcurrent fuse booster heater | | F1U, F2U (A4P) | * | Fuse 5 A 250 V for digital I/O PCB | | K1A, K2A | * | High voltage Smart Grid relay | | K1M, K2M | | Contactor backup heater | | КЗМ | * | Contactor booster heater | | K5M | | Safety contactor backup heater | | K*R (A4P) | | Relay on PCB | | M2P | # | Domestic hot water pump | | M2S | # | 2-way valve for cooling mode | | M3S | * | 3-way valve for space heating/domestic hot water | | PC (A15P) | * | Power circuit | | PHC1 (A4P) | * | Optocoupler input circuit | | Q1L | | Thermal protector backup heater | | Q4L | # | Safety thermostat | | Q*DI | # | Earth leakage circuit breaker | | R1H (A2P) | * | Humidity sensor | | R1T (A2P) | * | Ambient sensor ON/OFF thermostat | | R2T (A2P) | * | External sensor (floor or ambient) | | R5T | * | Domestic hot water thermistor | | R6T | * | External indoor or outdoor ambient thermistor | | S1S | # | Preferential kWh rate power supply contact | | S2S | # | Electrical meter pulse input 1 | | S3S | # | Electrical meter pulse input 2 | | S4S | # | Smart Grid feed-in | | S6S~S9S | * | Digital power limitation inputs | | S10S-S11S | # | Low voltage Smart Grid contact | | SS1 (A4P) | * | Selector switch | | TR1 | | Power supply transformer | | | | 1 | # 10 Technical data | X6M | # | Backup heater power supply terminal strip | |-------------------|---|--| | X6M | * | Booster heater power supply connector | | X7M, X8M | * | Booster heater power supply terminal strip | | X10M | * | Smart Grid power supply terminal strip | | X*, X*A, X*Y*, Y* | | Connector | | X*M | | Terminal strip | ^{*} Optional # Translation of text on wiring diagram | English | Translation | |---|--| | (1) Main power connection | (1) Main power connection | | For HP tariff | For heat pump tariff | | Indoor unit supplied from outdoor | Indoor unit supplied from outdoor | | Normal kWh rate power supply | Normal kWh rate power supply | | Only for normal power supply | Only for normal power supply | | (standard) | (standard) | | Only for preferential kWh rate | Only for preferential kWh rate | | power supply (outdoor) | power supply (outdoor) | | Outdoor unit | Outdoor unit | | Preferential kWh rate power supply contact: 16 V DC | Preferential kWh rate power supply contact: 16 V DC | | detection (voltage supplied by | detection (voltage supplied by | | PCB) | PCB) | | SWB | Switch box | | Use normal kWh rate power supply for indoor unit | Use normal kWh rate power supply for indoor unit | | (2) Backup heater power supply | (2) Backup heater power supply | | Only for *** | Only for *** | | (3) User interface | (3) User interface | | Only for remote user interface | Only for the dedicated Human | | | Comfort Interface (BRC1HHDA used as room thermostat) | | SD card | Card slot for WLAN cartridge | | SWB | Switch box | | WLAN cartridge | WLAN cartridge | | (4) Domestic hot water tank | (4) Domestic hot water tank | | 3 wire type SPST | 3 wire type SPST | | Booster heater power supply | Booster heater power supply | | Only for *** | Only for *** | | SWB | Switch box | | (5) Ext. thermistor | (5) External thermistor | | SWB | Switch box | | (6) Field supplied options | (6) Field supplied options | | 12 V DC pulse detection (voltage | 12 V DC pulse detection (voltage | | supplied by PCB) | supplied by PCB) | | 230 V AC Control Device | 230 V AC Control Device | | 230 V AC supplied by PCB | 230 V AC supplied by PCB | | Bizone mixing kit | Bizone mixing kit | | Continuous | Continuous current | | DHW pump output | Domestic hot water pump output | | DHW pump | Domestic hot water pump | | Electrical meters | Electrical meters | | For HV smartgrid | For high voltage Smart Grid | | For LV smartgrid | For low voltage Smart Grid | | For safety thermostat | For safety thermostat | | For smartgrid | For Smart Grid | | Inrush | Inrush current | | 111111111111111111111111111111111111111 | IIII USII CUITEIIL | | English | Translation | |--|--| | Max. load | Maximum load | | Normally closed | Normally closed | | Normally open | Normally open | | Safety thermostat contact: 16 V
DC detection (voltage supplied
by PCB) | Safety thermostat contact:
16 V DC detection (voltage
supplied by PCB) | | Shut-off valve | Shut-off valve | | Smartgrid contacts | Smart Grid contacts | | Smartgrid PV power pulse meter | Smart Grid photovoltaic power pulse meter | | SWB | Switch box | | (7) Option PCBs | (7) Option PCBs | | Alarm output | Alarm output | | Changeover to ext. heat source | Changeover to external heat source | | Max. load | Maximum load | | Min. load | Minimum load | | Only for demand PCB option | Only for demand PCB option | | Only for digital I/O PCB option | Only for digital I/O PCB option | | Options:
external heat source output, solar pump connection, alarm output | Options: external heat source output, solar pump connection, alarm output | | Options: On/OFF output | Options: ON/OFF output | | Power limitation digital inputs: 12 V DC / 12 mA detection (voltage supplied by PCB) | Power limitation digital inputs:
12 V DC / 12 mA detection
(voltage supplied by PCB) | | Refer to operation manual | Refer to the operation manual | | Solar input | Solar input | | Solar pump connection | Solar pump connection | | Space C/H On/OFF output | Space cooling/heating ON/OFF output | | SWB | Switch box | | (8) External On/OFF thermostats and heat pump convector | (8) External ON/OFF thermostats and heat pump convector | | Additional LWT zone | Additional leaving water temperature zone | | Main LWT zone | Main leaving water temperature zone | | Only for external sensor (floor/ambient) | Only for external sensor (floor or ambient) | | Only for heat pump convector | Only for heat pump convector | | Only for wired On/OFF thermostat | Only for wired ON/OFF thermostat | | Only for wireless On/OFF thermostat | Only for wireless ON/OFF thermostat | [#] Field supply #### Electrical connection diagram For more details, please check the unit wiring. DAIKIN 4P643600-1 B 0000000X