Specifications Table for EWAT-B-XL

EWAT085B-XLB1 EWAT085B-XLA1 EWAT115B-XLB1 EWAT115B-XLA1 EWAT145B-XLB1 EWAT145B-XLA1 EWAT180B-XLB2 EWAT180B-XLB2-VFDFAN EWAT180B-XLA2-VFDFAN EWAT180B-XLA2 EWAT185B-XLB1 EWAT185B-XLA1 EWAT200B-XLB2 EWAT200B-XLB2-VFDFAN EWAT200B-XLA2-VFDFAN EWAT200B-XLA2 EWAT220B-XLB2 EWAT220B-XLB2-VFDFAN EWAT220B-XLA2-VFDFAN EWAT220B-XLA2 EWAT230B-XLB1 EWAT230B-XLB1-VFDFAN EWAT230B-XLA1-VFDFAN EWAT230B-XLA1 EWAT250B-XLB2 EWAT250B-XLB2-VFDFAN EWAT250B-XLA2-VFDFAN EWAT250B-XLA2 EWAT280B-XLB2 EWAT280B-XLB2-VFDFAN EWAT280B-XLA2-VFDFAN EWAT280B-XLA2 EWAT300B-XLB1 EWAT300B-XLB1-VFDFAN EWAT300B-XLA1-VFDFAN EWAT300B-XLA1 EWAT310B-XLB2 EWAT310B-XLB2-VFDFAN EWAT310B-XLA2-VFDFAN EWAT310B-XLA2 EWAT320B-XLB2-VFDFAN EWAT320B-XLB2 EWAT320B-XLA2-VFDFAN EWAT320B-XLA2 EWAT360B-XLB1 EWAT360B-XLB1-VFDFAN EWAT360B-XLA1-VFDFAN EWAT360B-XLA1 EWAT370B-XLB2 EWAT370B-XLB2-VFDFAN EWAT370B-XLA2 EWAT370B-XLA2-VFDFAN EWAT430B-XLB2 EWAT430B-XLB2-VFDFAN EWAT430B-XLA2 EWAT430B-XLA2-VFDFAN EWAT470B-XLB2-VFDFAN EWAT470B-XLB2 EWAT470B-XLA2 EWAT470B-XLA2-VFDFAN EWAT540B-XLB2 EWAT540B-XLB2-VFDFAN EWAT540B-XLA2 EWAT540B-XLA2-VFDFAN EWAT600B-XLB2 EWAT600B-XLB2-VFDFAN EWAT600B-XLA2-VFDFAN EWAT600B-XLA2 EWAT660B-XLB2 EWAT660B-XLB2-VFDFAN EWAT660B-XLA2 EWAT660B-XLA2-VFDFAN EWAT700B-XLB2 EWAT700B-XLB2-VFDFAN EWAT700B-XLA2 EWAT700B-XLA2-VFDFAN
Cooling capacity Nom. kW 88 87.7 114 113.64 143 143.23 179 179 178.64 178.64 183 182.18 201 201 200.33 200.33 226 226 225.65 225.65 239 239 238.26 238.26 255 255 254.08 254.08 282 282 280.99 280.99 305 305 303.6 303.6 305 305 304.42 304.42 326 326 325.3 325.3 352 352 350.13 350.13 372 372 370.33 370.33 425 425 423.61 423.61 472 472 470.48 470.48 538 538 536.64 536.64 609 609 606.55 606.55 662 662 659.77 659.77 704 704 701.27 701.27
Capacity control Method   Step Staged Step Staged Step Staged Step Step Variable Variable Step Staged Step Step Variable Variable Step Step Variable Variable Step Step Staged Staged Step Step Variable Variable Step Step Variable Variable Step Step Variable Variable Step Step Variable Variable Step Step Variable Variable Step Step Variable Variable Step Step Variable Variable Step Step Variable Variable Step Step Variable Variable Step Step Variable Variable Step Step Variable Variable Step Step Variable Variable Step Step Variable Variable
  Minimum capacity % 50 50 38 38 50 50 25 25 25 25 38 38 21 21 21 21 19 19 19 19 50 50 50 50 17 17 17 17 16 16 16 16 24 24 24 24 14 14 14 14 22 22 22 22 33 33 33 33 19 19 19 19 17 17 17 17 25 25 25 25 14 14 14 14 12 12 12 12 11 11 11 11 17 17 17 17
Power input Cooling Nom. kW 28.8 28.9 36.6 36.5 44.4 44.5 57 57.2 57.4 57.2 63.6 63.8 65.7 65.9 65.9 65.7 74.7 74.9 75.1 74.9 74.6 74.8 75 74.8 81.7 82 82 81.8 87.9 88.2 88.5 88.2 97.3 97.6 98 97.7 97.4 97.7 97.6 97.7 107 106.8 107 106 113 113 113 113 121 122 121 122 137 137 136 136 153 153 152 153 175 175 175 176 195 195 195 195 211 211 211 212 227 228 227 228
EER 3.05 3.04 3.12 3.11 3.23 3.22 3.14 3.13 3.11 3.12 2.87 2.86 3.06 3.05 3.04 3.05 3.03 3.02 3.01 3.01 3.21 3.19 3.18 3.19 3.12 3.11 3.1 3.11 3.2 3.19 3.17 3.19 3.13 3.12 3.1 3.11 3.313 3.12 3.12 3.12 3.05 3.06 3.04 3.05 3.11 3.11 3.1 3.1 3.06 3.05 3.05 3.04 3.11 3.1 3.11 3.1 3.08 3.09 3.08 3.07 3.07 3.07 3.06 3.05 3.12 3.11 3.1 3.1 3.14 3.13 3.12 3.11 3.1 3.09 3.08 3.07
ESEER   4.07   4.23   4.19     4.3 4.02   4.05     4.13 4.01     4.19 4.06     4.23 4.1     4.21 4.03     4.23 4.15     4.32 4.14     4.18 4.13     4.22 4.12     4.25 4.08     4.03 4.15     4.12 4.17     4.09 4.2     4.06 4.3     4.25 4.08     4.12 4.33     4.05 4.27
Dimensions Unit Depth mm 2,660 2,660 3,180 3,180 3,780 3,780 2,326 2,326 2,326 2,326 3,780 3,780 2,326 2,326 2,326 2,326 2,326 2,326 2,326 2,326 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 4,126 4,126 4,126 4,126 4,126 4,126 4,126 4,126 4,126 4,126 4,126 4,126 5,025 5,025 5,025 5,025 5,025 5,025 5,025 5,025 5,874 5,874 5,874 5,874 6,774 6,774 6,774 6,774 6,774 6,774 6,774 6,774
    Height mm 1,801 1,801 1,801 1,801 1,822 1,822 2,540 2,540 2,540 2,540 1,822 1,822 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540
    Width mm 1,204 1,204 1,204 1,204 1,204 1,204 2,236 2,236 2,236 2,236 1,204 1,204 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236
Weight Operation weight kg 752 752 846 846 968 968 1,747 1,747 1,743 1,743 1,088 1,088 1,777 1,777 1,773 1,773 1,813 1,813 1,801 1,801 2,098 2,098 1,997 1,997 2,104 2,104 2,066 2,066 2,250 2,250 2,209 2,209 2,338 2,338 2,234 2,234 2,281 2,281 2,241 2,241 2,318 2,318 2,277 2,277 2,751 2,751 2,614 2,614 2,821 2,821 2,655 2,655 2,916 2,916 2,848 2,848 3,421 3,421 3,268 3,268 3,675 3,675 3,497 3,497 4,148 4,148 3,916 3,916 4,550 4,550 4,290 4,290 4,692 4,692 4,432 4,432
  Unit kg 747 744 840 837 959 961 1,736 1,736 1,732 1,732 1,076 1,072 1,766 1,766 1,763 1,763 1,802 1,802 1,790 1,790 2,082 2,082 1,977 1,977 2,090 2,090 2,054 2,054 2,231 2,231 2,192 2,192 2,318 2,318 2,212 2,212 2,262 2,262 2,220 2,220 2,299 2,299 2,247 2,247 2,731 2,731 2,590 2,590 2,801 2,801 2,627 2,627 2,888 2,888 2,811 2,811 3,393 3,393 3,237 3,237 3,633 3,633 3,458 3,458 4,106 4,106 3,873 3,873 4,500 4,500 4,248 4,248 4,642 4,642 4,396 4,396
Water heat exchanger Type   Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate
  Water volume l 5 5 6 6 9 9 11 11 11 11 12 12 11 11 11 11 11 11 11 11 16 16 16 16 14 14 14 14 19 19 19 19 20 20 20 20 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 28 28 28 28 28 28 28 28 42 42 42 42 42 42 42 42 50 50 50 50 50 50 50 50
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
Fan Air flow rate Nom. l/s 9,036 9,036 12,023 12,023 15,057 15,057 20,306 20,306 20,306 20,306 15,057 15,057 20,306 20,306 20,306 20,306 20,306 20,306 20,306 20,306 25,382 25,382 25,382 25,382 25,382 25,382 25,382 25,382 30,459 30,459 30,459 30,459 30,459 30,459 30,459 30,459 30,459 30,459 30,459 30,459 30,459 30,459 30,459 30,459 35,535 35,535 35,535 35,535 35,535 35,535 35,535 35,535 40,612 40,612 40,612 40,612 45,688 45,688 45,688 45,688 50,765 50,765 50,765 50,765 60,918 60,918 60,918 60,918 65,994 65,994 65,994 65,994 71,071 71,071 71,071 71,071
  Speed rpm 1,360 1,360 1,360 1,360 1,360 1,360 900 900 900 900 1,360 1,360 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900
Compressor Quantity   2 2 2 2 2 2 4 4 4 4 2 2 4 4 4 4 4 4 4 4 2 2 2 2 4 4 4 4 4 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6
  Type   Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression Scroll compressor Scroll compressor Driven vapour compression Driven vapour compression
Operation range Air side Cooling Max. °CDB   46   46   46     46 46   46     46 46     46 46     46 46     46 46     46 46     46 46     46 46     46 46     46 46     46 46     46 46     46 46     46 46     46 46     46 46     46 46
      Min. °CDB   -10   -10   -10     -18 -18   -10     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18     -18 -18
  Water side Cooling Max. °CDB   20   20   20     20 20   20     20 20     20 20     20 20     20 20     20 20     20 20     20 20     20 20     20 20     20 20     20 20     20 20     20 20     20 20     20 20     20 20
      Min. °CDB   -13   -13   -13     -13 -13   -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13     -13 -13
Sound power level Cooling Nom. dBA 85.2 (1) 85.2 87.1 (1) 87.1 88.5 (1) 88.5 90.6 (1) 90.6 (1) 90.6 90.6 89.3 (1) 89.3 90.6 (1) 90.6 (1) 90.6 90.6 90.7 (1) 90.7 (1) 90.7 90.7 91.8 (1) 91.8 (1) 91.8 91.8 91.7 (1) 91.7 (1) 91.7 91.7 92.5 (1) 92.5 (1) 92.5 92.5 92.6 (1) 92.6 (1) 92.6 92.6 92.5 (1) 92.5 (1) 92.5 92.5 92.6 (1) 92.6 (1) 92.6 92.6 93.3 (1) 93.3 (1) 93.3 93.3 93.2 (1) 93.2 (1) 93.2 93.2 93.8 (1) 93.8 (1) 93.8 93.8 94.4 (1) 94.4 (1) 94.4 94.4 94.8 (1) 94.8 (1) 94.8 94.8 95.6 (1) 95.6 (1) 95.6 95.6 95.9 (1) 95.9 (1) 95.9 95.9 96.3 (1) 96.3 (1) 96.3 96.3
Sound pressure level Cooling Nom. dBA 67.5 (1) 67.5 69.1 (1) 69.1 70.1 (1) 70.1 71.6 (1) 71.6 (1) 71.6 71.6 70.9 (1) 70.9 71.7 (1) 71.7 (1) 71.7 71.7 71.7 (1) 71.7 (1) 71.7 71.7 72.3 (1) 72.3 (1) 72.3 72.3 72.2 (1) 72.2 (1) 72.2 72.2 73 (1) 73 (1) 73 73 73.1 (1) 73.1 (1) 73.1 73.1 73 (1) 73 (1) 73 73 73.1 (1) 73.1 (1) 73.1 73.1 73.3 (1) 73.3 (1) 73.3 73.3 73.3 (1) 73.3 (1) 73.3 73.3 73.9 (1) 73.9 (1) 73.9 73.9 74 (1) 74 (1) 74 74 74.4 (1) 74.4 (1) 74.4 74.4 74.8 (1) 74.8 (1) 74.8 74.8 74.8 (1) 74.8 (1) 74.8 74.8 75.2 (1) 75.2 (1) 75.2 75.2
Refrigerant Type   R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32
  GWP   675 675 675 675 675 675   675 675 675 675 675   675 675 675   675 675 675   675 675 675   675 675 675   675 675 675   675 675 675   675 675 675 675   675 675   675 675 675   675 675 675   675 675 675 675   675 675   675 675 675   675 675 675   675 675 675   675 675 675
  Circuits Quantity   1 1 1 1 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
  Charge kg 9 10.5 10 12.5 11 15 20 20 30 30 12 16 20 20 36 36 20 20 37 37 23.5 23.5 30 30 24 24 42 42 27.5 27.5 48 48 28 28 36 36 28 28 50 50 27.5 27.5 52 52 32 32 50 50 31 31 58 58 36 36 62 62 43.5 43.5 70 70 49 49 78 78 55 55 80 80 60 60 92 92 66 66 100 100
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V   400   400   400     400 400   400     400 400     400 400     400 400     400 400     400 400     400 400     400 400     400 400     400 400     400 400     400 400     400 400     400 400     400 400     400 400     400 400
Compressor Starting method   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line
Notes (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (0) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
  (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (1) - The value refers to the pressure drop in the evaporator only (1) - The value refers to the pressure drop in the evaporator only (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281
  (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (2) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i
  (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The certification refers only to the overall sound power level. (3) - The certification refers only to the overall sound power level. (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (4) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options.
  (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data.
  (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (7) - Fluid: Water (7) - Fluid: Water (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only
  (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans
  (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (10) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced.
  (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - The data are referred to the unit without additional options. (14) - The data are referred to the unit without additional options. (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
  (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data.   (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.     (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.