Specifications Table for EWAH-TZSLB

EWAH170TZSLB1 EWAH200TZSLB1 EWAH240TZSLB1 EWAH290TZSLB1 EWAH330TZSLB1 EWAH390TZSLB2 EWAH420TZSLB2 EWAH490TZSLB2 EWAH530TZSLB2 EWAH600TZSLB2 EWAH690TZSLB2 EWAH750TZSLB2 EWAH820TZSLB2 EWAH920TZSLB2 EWAH980TZSLB2 EWAHC10TZSLB2
Cooling capacity Nom. kW 171 200 240 294 326 394 421 491 528 599 690 746
Capacity control Method   Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable
  Minimum capacity % 33.4 28.6 23.6 18.7 18.7 14.3 13.4 11.8 11.2 10 10 10
Power input Cooling Nom. kW 55.4 69.4 83.3 97.5 115 131 146 170 188 212 244 259
EER 3.08 2.88 2.89 3.02 2.82 2.99 2.88 2.88 2.8 2.82 2.82 2.87 2.93 2.85 2.88 2.81
IPLV 5.19 5.22 5.5 5.73 5.52 5.18 5.16 5.4 5.31 5.41 5.66 5.62 5.72 5.7 5.81 5.86
SEER 4.245 4.311 4.567 4.742 4.589 4.602 4.589 4.751 4.743 4.842 4.951 5.006 5.248 5.278 5.206 5.13
Dimensions Unit Depth mm 2,283 2,283 3,183 3,183 3,183 4,983 4,983 5,883 5,883 6,783 6,783 7,776
    Height mm 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537
    Width mm 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258
Weight Operation weight kg 2,186.7 2,207.95 2,486.75 2,608.9 2,608.9 4,329.2 4,323.2 4,890 4,867 5,867 5,920 7,316.8
  Unit kg 2,160.6 2,170.6 2,449.4 2,559.4 2,559.4 4,170.2 4,170.2 4,634 4,634 5,619 5,619 6,820.8
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
Fan Quantity   4 4 6 6 6 10 10 12 12 12 14 16
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
Fan motor Drive   ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF
Compressor Quantity   1 1 1 1 1 2 2 2 2 2 2 2
  Type   Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor
  Starting method   Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven
Operation range Air side Cooling Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
      Max. °CDB 50 50 50 50 50 50 50 50 50 50 50 50
  Water side Evaporator Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
      Max. °CDB 18 18 18 18 18 18 18 18 18 18 18 18
Sound power level Cooling Nom. dBA 91.73 92.13 94.69 96.44 96.44 95.32 95.69 97.69 99.9 99.44 99.51 99.57
Sound pressure level Cooling Nom. dBA 72.78 73.17 75.2 76.96 76.96 74.94 75.31 76.92 79.12 78.67 78.39 78.08
Refrigerant Type   R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze)
  GWP   7 7 7 7 7 7 7 7 7 7 7 7
  Charge kg 27.6 27.6 41.4 41.4 41.4 64.2 64.2 78 78 102 102 116.8
  Circuits Quantity   1 1 1 1 1 2 2 2 2 2 2 2
Piping connections Evaporator water inlet/outlet (OD)   88.9mm 88.9mm 114.3mm 114.3mm 114.3mm 139.7mm 139.7mm 168.3mm 168.3mm 168.3mm 168.3mm 219.1mm
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10
Unit Running current Cooling Nom. A 93.0 114.0 137.0 158.0 191.0 217.0 243.0 279.0 307.0 343.0 403.0 426.0
    Max A 132.0 156.0 217.0 236.0 272.0 312.0 348.0 434.0 500.0 522.0 606.0 690.0
  Max unit current for wires sizing A 145.08 171.1 239.22 259.37 299.63 343.15 382.73 476.87 550.55 574.09 666.88 759.03
Notes (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
  (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only (2) - The value refers to the pressure drop in the evaporator only
  (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1 (3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1
  (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit. (4) - The sound pressure level is measured via a microphone at 1m distance of the unit.
  (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options. (7) - All data refers to the standard unit without options.
  (8) - Fluid: Water (8) - Fluid: Water (8) - Fluid: Water (8) - Fluid: Water (8) - Fluid: Water (8) - Fluid: Water (8) - Fluid: Water (8) - Fluid: Water (8) - Fluid: Water (8) - Fluid: Water (8) - Fluid: Water (8) - Fluid: Water
  (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (9) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (10) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
  (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (11) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (12) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (13) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum unit current for wires sizing is based on minimum allowed voltage. (13) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (14) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (15) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
  (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data. (16) - All data are subject to change without notice. Please refer to the unit nameplate data.
  (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (17) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding (18) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding
  (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.
Cooling capacity Nom. kW                         821 915 982 1063
Capacity control Minimum capacity %                         10.8 10 10 10
Power input Cooling Nom. kW                         280 321 341 378
Dimensions Unit Depth mm                         7776 8676 9576 9576
    Height mm                         2537 2537 2537 2537
    Width mm                         2258 2258 2258 2258
Weight Operation weight kg                         7438.8 7758.2 8038 8006
  Unit kg                         6942.8 7262.2 7553 7553
Casing Colour                           Ivory white Ivory white Ivory white Ivory white
  Material                           Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Fan Quantity                           16 18 20 20
  Type                           Direct propeller Direct propeller Direct propeller Direct propeller
Fan motor Drive                           ON/OFF ON/OFF ON/OFF ON/OFF
Compressor Quantity                           2 2 2 2
  Type                           Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor
  Starting method                           Inverter driven Inverter driven Inverter driven Inverter driven
Operation range Air side Cooling Min. °CDB                         -18 -18 -18 -18
      Max. °CDB                         50 50 50 50
  Water side Evaporator Min. °CDB                         -8 -8 -8 -8
      Max. °CDB                         18 18 18 18
Sound power level Cooling Nom. dBA                         99.46 100.8 101.49 102.16
Sound pressure level Cooling Nom. dBA                         77.97 79.01 79.41 80.08
Refrigerant GWP                           7 7 7 7
  Charge kg                         116.8 131.2 146 146
  Circuits Quantity                           2 2 2 2
Piping connections Evaporator water inlet/outlet (OD)                           219.1mm 219.1mm 219.1mm 219.1mm
Power supply Frequency Hz                         50 50 50 50
  Voltage range Min. %                         -10 -10 -10 -10
    Max. %                         10 10 10 10
Unit Running current Cooling Nom. A                         457.0 517.0 546.0 602.0
    Max A                         589.0 661.0 706.0 754.0
  Max unit current for wires sizing A                         648.1 726.96 776.9 829.7