| EWWD450VZXSA1 | EWWD500VZXSA1 | EWWD610VZXSA1 | EWWD710VZXSA1 | EWWD800VZXSA1 | EWWD900VZXSA1 | EWWDC11VZXSA1 | EWWDC12VZXSA2 | EWWDC13VZXSA2 | EWWDC14VZXSA2 | EWWDC16VZXSA2 | EWWDC17VZXSA2 | EWWDC19VZXSA2 | EWWDC21VZXSA2 | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cooling capacity | Nom. | kW | 449 | 501 | 613 | 713 | 794 | 901 | 1,053 | 1,194 | 1,305 | 1,407 | 1,593 | 1,748 | 1,912 | 2,074 | ||
| Capacity control | Method | Variable | Variable | Variable | Variable | Variable | Variable | Variable | Variable | Variable | Variable | Variable | Variable | Variable | Variable | |||
| Minimum capacity | % | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |||
| Power input | Cooling | Nom. | kW | 81.2 | 89.7 | 108 | 128 | 146 | 159 | 192 | 221 | 244 | 262 | 296 | 329 | 365 | 394 | |
| EER | 5.53 | 5.58 | 5.64 | 5.54 | 5.43 | 5.67 | 5.46 | 5.38 | 5.34 | 5.36 | 5.38 | 5.31 | 5.23 | 5.25 | ||||
| ESEER | 7.51 | 7.92 | 8.1 | 8.2 | 8.22 | 7.92 | 8.17 | 8.36 | 8.25 | 8.47 | 8.24 | 8.45 | 8.2 | 8.33 | ||||
| Dimensions | Unit | Depth | mm | 3,722 | 3,722 | 3,750 | 3,690 | 3,690 | 3,822 | 3,822 | 4,792 | 4,792 | 4,508 | 4,508 | 4,750 | 4,874 | 4,874 | |
| Height | mm | 2,135 | 2,135 | 2,123 | 2,235 | 2,235 | 2,487 | 2,487 | 2,296 | 2,296 | 2,301 | 2,350 | 2,500 | 2,469 | 2,493 | |||
| Width | mm | 1,178 | 1,178 | 1,179 | 1,189 | 1,189 | 1,303 | 1,303 | 1,484 | 1,639 | 1,579 | 1,580 | 1,610 | 1,704 | 1,769 | |||
| Weight | Unit | kg | 2,968 | 2,911 | 3,102 | 3,470 | 3,451 | 4,257 | 4,552 | 5,860 | 6,240 | 6,520 | 6,920 | 7,530 | 7,790 | 8,670 | ||
| Operation weight | kg | 3,098 | 3,006 | 3,274 | 3,648 | 3,611 | 4,518 | 4,860 | 6,370 | 6,760 | 7,130 | 7,530 | 8,300 | 8,560 | 9,630 | |||
| Water heat exchanger - evaporator | Type | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | Flooded shell and tube | |||
| Water volume | l | 70 | 88 | 136 | 134 | 134 | 168 | 199 | 270 | 270 | 320 | 320 | 380 | 480 | 480 | |||
| Water heat exchanger - condenser | Type | Shell and tube | Shell and tube | Shell and tube | Shell and tube | Shell and tube | Shell and tube | Shell and tube | Shell and tube | Shell and tube | Shell and tube | Shell and tube | Shell and tube | Shell and tube | Shell and tube | |||
| Compressor | Type | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | Inverter driven single screw compressor | |||
| Quantity | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||
| Sound power level | Cooling | Nom. | dBA | 97 | 99 | 101 | 105 | 105 | 105 | 107 | 106 | 106 | 107 | 107 | 108 | 109 | 110 | |
| Sound pressure level | Cooling | Nom. | dBA | 78 | 80 | 82 | 86 | 86 | 86 | 88 | 87 | 87 | 88 | 88 | 89 | 89 | 90 | |
| Operation range | Evaporator | Cooling | Min. | °CDB | -3 | -3 | -3 | -3 | -3 | -3 | -3 | -3 | -3 | -3 | -3 | -3 | -3 | -3 |
| Max. | °CDB | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | |||
| Condenser | Cooling | Min. | °CDB | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | |
| Max. | °CDB | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | 65 | |||
| Refrigerant | Type | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | R-134a | |||
| Charge | kg | 95 | 95 | 100 | 110 | 170 | 170 | 180 | 250 | 260 | 290 | 290 | 320 | 320 | 350 | |||
| Circuits | Quantity | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |||
| GWP | 1,430 | 1,430 | 1,430 | 1,430 | 1,430 | 1,430 | 1,430 | 1,430 | 1,430 | 1,430 | 1,430 | 1,430 | 1,430 | 1,430 | ||||
| Power supply | Phase | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | 3~ | |||
| Frequency | Hz | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | |||
| Voltage | V | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | |||
| Notes | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; condenser 30/35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 | ||||
| (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | (2) - Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; entering condenser water temp. 30°C; leaving condenser water temp. 35°C; full load operation; standard: ISO3744 | |||||
| (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. | |||||
| (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | (4) - Nominal running current in cooling mode is referred to the following conditions: evaporator 12°C/7°C; condenser 30°C/35°C | |||||
| (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | (5) - Maximum running current is based on max compressor absorbed current in its envelope | |||||
| (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | (6) - Maximum unit current for wires sizing is based on minimum allowed voltage. | |||||
| (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | (7) - Maximum current for wires sizing: compressor full load ampere x 1.1 | |||||
| (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | (8) - All data refers to the standard unit without options. | |||||
| (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | (9) - All data are subject to change without notice. Please refer to the unit nameplate data. | |||||
| (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). | |||||
| (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. | |||||
| (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | (12) - In case of inverter driven units, no inrush current at start up is experienced. | |||||